Chapter 2

Array

n
&
il
i
=
o
A=)
<
®)
C
©
(7))
)
S
>
e
o
>
—
7))
©
e
©
)

By: Sayed Hassan Adelyar

) 26 July, 2010

= Most commonly used data storage structure.
= A set of elements stored in computer memory.

= All the elements have the same name & type
and are differentiate by an index.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

public class student {

Int idno;

String name,;

Int score;

public student (int id, String stname, int sc) {

iIdno = id;
name = stname;
score = Sc;

}

By: Sayed Hassan Adelyar

Data Structures and Algorithms

public static void main (String [] args){
student stscore[] = new student [12];
int i;
student st1 = new student(22, "safi", 80);
student st2 = new student(33, "zabi", 75);
student st3 = new student(44, "khan", 90);
student st4 = new student(55, "wali", 70);

stscore[0] = st1;
stscore[1] = st2;
stscore[2] = st3;
stscore[3] = st4;

for(i=0; i<4; i++) {
System.out.printin(stscore[i].idno);
System.out.printin(stscore[i].name);
System.out.printin(stscore[i].score);

By: Sayed Hassan Adelyar

Searching

= Two search Algorithm are available:
o Linear Search,
o Binary Search.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

> ‘2uy 200

Linear Search Algorithm

public student find(String searchname)
{
Int J;
for(J=0; j<nelems; j++)

If(a[j] = searchname)

break;

If(] == nelems)

return null;
else

return a[j];

Data Structures and Algorithms

e

By: Sayed Hassan Adelyar

Data Structures and Algorithms

public boolean find(int searchkey) {
int lowerBound = 0;

int upperBound = n-1;
int middle=0;
while(true) {

middle = (lowerBound + upperBound)
/2;

If (student[middle] == searchkey)
return true;

else if(lowerBound > upperBound)
return false;

Search Algorithm

else {
If(student[middle] <
searchkey)
lowerBound = middle + 1;
else
upperBound = middle - 1;
h
}
h

BySayed Hassan

\delyar

26 July, 2010

= Sorting Is, without doubt, the most fundamental
algorithmic problem.

1. Supposedly, 25% of all CPU cycles are spent
sorting

2. Sorting Is fundamental to most other algorithmic
problems, for example binary search.

3. Many different approaches lead to useful
sorting algorithms, and these ideas can be used
to solve many other problems.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

26 July, 2010

Applications of Sorting
a Speeding up searching.

2 Given n numbers, find the pair which is closest
to each other.

o Given a set of n items, are they all unique or are
there any duplicates?

o Frequency distribution - Given a set of n items,
which element occurs the largest number of times?

2 What is the kth largest item In the set?

By: Sayed Hassan Adelyar

Data Structures and Algorithms

26 July, 2010

Bubble Sort

Start at the left end of the line and compare the elements in position
0&1.

If the one on the left is bigger, you swap them.

Move over one position and compare the elements in positions 1 and
2.

If the one on the left is bigger, you swap them.
Continue down the line this way until you reach the right end.

Go back and start another pass from the left end of line, go toward
the right, comparing and swapping. This time you can stop one
Iitem short of the end of the line, at position N-2, because you know
the last position, at N-1, already contains the biggest item.

Continue this process until all the elements are in order.

By: Sayed Hassan Adelyar

Data Structures and Algorithms

public void bubblesort()
{

Int out, IN;

for(out=n-1; out>0; out--)
for(in=0; In<out; in++)
If(student[in] > student[in+1])

swap(in, in+1);

public void swap (int one,
Int two)

{
Int temp = student[one];

student[one] =
student[two];

student[two] = temp;

By: Sayed Hassan Adelydn

Data Structures and Algorithms

26 July, 2010

Selection Sort

e most natural and easiest sorting algorithm.
Repeatedly find the smallest element, move it to the front.

The selection sort improves on the bubble sort by reducing
the number of swaps necessary from O(N”2) to O(N).

Unfortunately, the number of comparisons remains
O(N”2).

However, the selection sort can still offer a significant
Improvement for large records that must be physically

moved around in memory, causing the swap time to be
much more important than the comparison time.

By: Sayed Hassan Adelyar

Data Structures and Algorithms

public void selectionsort() {
Int out, In, min,;
for(out=0; out<n-1; out++) {
min = out;
for(in=out+1; In<n; in++)
If(student[in] < student [miIn])
min=in,
swap(out, min);

Ny pod

By: Sayed Hassan Adelyar

A 26 July, 2010

Quick Sort

= The most popular sorting algorithm.

= In the majority of situations, it is the fastest,
operating in O(N*logN) time.

= Quick sort was discovered by C.A.R. Hoare In
1962.

= Operates by partitioning an array into two sub-
arrays and then calling itself recursively to quick
sort each of these sub-arrays.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

n
&
il
i
=
o
O
<
®)
C
©
(7))
)
S
>
e
o
>
—
0p)]
©
e
©
)

recquicksort(0, n-1);

¥
public void recquicksort(int left, int right)

{
if(right-left <= 0)
return;
else

{
long pivot = a[right];

int partition = partitionit(left, right, pivot);
recquicksort(left, partition-1);
recquicksort(partition+1, right);

}

}

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Int leftptr = left -1,

Int rightptr = right;

while(true) {
while(a[++leftptr] < pivot)

while(rightptr > 0 && a[--rightptr] > pivot)

if(leftptr >= rightptr)
break;
else
swap(leftptr, rightptr);
by
swap(leftptr, right);
return leftptr;

public void swap(int dex1,
Int dex2)
{
long temp = a[dex1];
a[dex1] = a[dex2];
a[dex2] = temp;
h

}

By: Sayed Hassan Adelyar

Complete Java Program for Quick gort

Import java.util. Random;
class starrayapp

public static void main(String[] args)
{
int maxsize = 100;
starray stlist;
stlist = new starray(maxsize);
int item;
Random generator2 = new Random();
for(inti= 1; i<25; i++){
item = generator2.nextint(100) + O;
stlist.insert(item);
}
System.out.printin("List of items before sorting");
stlist.display();
stlist.quicksort();
System.out.printin("List of items after sorting");
stlist.display();

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

class starray

{

private Int[] student;
private int n;

public starray (int max)

{

student = new Iint[max];
n=0;

Ny pod

By: Sayed Hassan Adelyar

n
&
il
i
=
o
A=)
<
®)
C
©
(7))
)
S
>
e
o
>
—
7))
©
e
©
)

public void quicksort()
{

}
public void recquicksort(int left, int right)

{

recquicksort(0, n-1);

if(right-left <= 0)
return;
else

{
long pivot = student[right];

int partition = partitionit(left, right, pivot);
recquicksort(left, partition-1);
recquicksort(partition+1, right);

By: Sayed Hassan Adelyar

n
=
e
—
-
o
A=)
<
®)
C
©
(7))
)
S
>
—
o
>
| -
—
7))
©
—
©
)]

int leftptr = left -1;

int rightptr = right;

while(true) {
while(student[++leftptr] < pivot)

while(rightptr > 0 && student[--rightptr] > pivot)

if(leftptr >= rightptr)
break;
else
swap(leftptr, rightptr);
}

swap(leftptr, right);
return leftptr;
}

By: Sayed Hassan Adelyar

Data Structures and Algorithms

public void swap(int dex1, int dex2)

{

Int temp = student[dex1];
student[dex1] = student[dex2];
student[dex2] = temp;

}

public void display()
{
for(int j=0; j<n; j++)
System.out.print(student [j] + " ");
System.out.printin(" ");

}
}

By: Sayed Hassan Adelyar

