Chapter 4

Queue

n
&
il
i
=
o
A=)
<
®)
C
©
(7))
)
S
>
e
o
>
—
7))
©
e
©
)

By: S. Hassan Adelyar

N 26 June, 2010

Queue

= A queue Is a data structure that is somewhat like a
stack, except that in a queue the first item inserted Is
the first to be removed (First-In-First-Out,FIFO),
while in a stack the last item inserted is the first to be
removed (LIFO).

= The main rule for queue Is to insert and delete
objects according to the FIFO principle.

Data Structures and Algorithms

By: S. Hassan Adelyar

Data Structures and Algorithms

26 June, 2010

There are various queues quietly doing their job in your
computer’s (or the network’s) operating system. There is
printer queue where print jobs wait for the printer to be
available.

A queue also stores keystroke data as you type at type at the
keyboard.

To avoid moving objects once they are placed in Q, we define
two variables first and rear, which has the following meanings:

first points to the first element and rear points to the last
element.

Initially first=rear=0, which indicate that the Q is empty.

By: S. Hassan Adelyar

Data Structures and Algorithms

class Queue {
private int maxSize;
private long[] queArray;
private int front;
private int rear;
private int nltems;
public Queue(int s) {

maxSize = s;

gueArray = new long[maxSize];
front = O;

rear = -1,

nltems = 0;

By: S. Hassan Adelyar

Data Structures and Algorithms

public void insert(long j) {

if(rear == maxSize - 1)
rear = -1;
gueArray[++rear] = j;
nltems++;
}

public long remove() {
long temp = queArray[front++];
if(front == maxSize)

front = O;
nltems--;
return temp;

By: S. Hassan Adelyar

public long peekFront() {
return queArray|front];

}
public boolean isEmpty() {

return (nltems==0);
}
public boolean isFull() {
return (nltems==maxSize);
}
public int Size() {
return nltems;

Data Structures and Algorithms

By: S. Hassan Adelyar

Data Structures and Algorithms

public static void main(String[] args) {
Queue theQueue = new Queue(5);
theQueue.insert(10);
theQueue.insert(20);
theQueue.insert(30);
theQueue.insert(40);
theQueue.remove();
theQueue.remove();
theQueue.remove();
theQueue.insert(50);
theQueue.insert(60);
theQueue.insert(70);
theQueue.insert(80);

By: S. Hassan Adelyar

Data Structures and Algorithms

while('theQueue.iIsEmpty())

{
long n = theQueue.remove();
System.out.print(n);
System.out.print(" ");

}
System.out.printin(" ");

By: S. Hassan Adelyar

26 June, 2010

= A priority queue is a more specialized data structure than a
stack or queue. Like an ordinary queue, a priority gueue has a
front and a rear, and items are removed from the front.

= However, in a priority gueue, items are ordered by key value
so that the item with the lowest key (or in some
Implementations the highest key) is always at the front. Items
are inserted in the proper position to maintain the order.

= Like ordinary queues, priority queues are used In various ways
In certain computer systems. In a preemptive multitasking
operating system for example, programs may be placed in a
priority queue so the highest-priority program is the next one to
receive a time-slice that allow it to execute.

Data Structures and Algorithms

By: S. Hassan Adelyar

Data Structures and Algorithms

Dueue Example

class PriorityQ {
private int maxSize;
private long[] queArray;
private int nltems;

public PriorityQ(int s) {

maxSize = s;
gueArray = new long[maxSize];
nitems = 0O;

By: S. Hassan Adelyar

Data Structures and Algorithms

public void insert(long item) {

int j;

if(nltems == 0)
gueArray[nltems++] = item;

else {

for(j=nltems-1; j>=0; j--) {
if(item > queArray[j])
queArray[j+1] = queArray[j];
else
break;
}
queArray[j+1] = item;
nltems++;

} By: S. Hassan Adelyar

Data Structures and Algorithms

public long remove() {
return queArray[--nltems];

}
public long peekMin() {

return queArray[nitems - 1];
}
public boolean isEmpty() {
return (nltems == 0);
}
public boolean isFull() {
return (nltems == maxSize);

By: S. Hassan Adelyar

Data Structures and Algorithms

class PriorityQApp {
public static void main(String[] args) {
PriorityQ thePQ = new PriorityQ(5);
thePQ.insert(30);
thePQ.insert(50);
thePQ.insert(10);
thePQ.insert(40);
thePQ.insert(20);
while('thePQ.isEmpty()) {
long item = thePO.remove();
System.out.print(item + " ");

}

System.out.printin(" ");

I

} By: S. Hassan Adelyar

