: 5 August, 2010

Trees

Binary Search Trees
= Trees are one of the fundamental data structure.

= Combines the advantage of array and a linked
list.

= They are called that, because if you try to visualize
the structure, It kind of looks like a tree (root,
branches, and leafs).

Trees are node based data structures, meaning
that they're made out of small parts called nodes.

= Tree Nodes have two or more child nodes.

[\

Data Structures and Algorithms
n

ava a alfa
\\UA W L/ \J A KNV A U/

By: Sayed Hassan Adelyar

'Y

7 : 5 August, 2010

Search Trees

Data Structures and Algorithms

By: Sayed Hassan Adelyar

N/ : 5 August, 2010

Binary Search Trees
= Recursive structures

= Sub-trees are disjoint. That is they don’t share
any nodes. In other word, there is a unique path
from the root of a tree to any other node of the
tree. This means that every node (except the
root) has a unique parent.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

N/ : 5 August, 2010

Binary Search Trees
= In computer programs, nodes often represent

such entities as people, car, airline reservations,
and so on.

= In an OOP language like Java these real-word
entities are represented by objects.

= The lines (edges) between the nodes represent
the way the nodes are related.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

N 5 August, 2010

Binary Trees

Binary Search Trees
= Each node Is capable of two children.

= Represent an important technique for handling
structures such as files and directories, dictionaries,
and symbol tables.

= If every node in a tree can have at most two children,
the tree Is called a binary tree. The two children of
each node in a binary tree are called the left child
and the right child. A node in binary tree doesn’t
necessarily have the maximum of two children; it may

have only a left child, or on a right child, or it can
have no children at all

Data Structures and Algorithms

By: Sayed Hassan Adelyar

A : 5 August, 2010

Binary Search Trees
= Binary tree is a dynamic data structure, that is

memory for its nodes Is allocated and de-
allocated during program execution.

= Maximum number of node at any level nis 2"

= The maximum number of level In n number of
node tree Is n.

= The minimum number of level iIn n number of node
tree is log (n).

Data Structures and Algorithms

By: Sayed Hassan Adelyar

: 5 August, 2010

Binary Search Tree(BST)

Binary Search Trees
= Tosupport O (log n) search, we add a property to binary tree:

o Smaller and equal value to left, and greater values to right.

= Inthis case BST has the benefits of both sorted array and linked
lists.

= BSTs are suitable for applications in which search time must be
minimized or in which the nodes are not necessarily processed in
seqguential order.

= Tradeoff: BSTs with its extra reference in each node, takes up more
memory space than a single linked list. In addition, the algorithms
for manipulating the tree are somewhat more complicated.

= Inits worst case if the elements were inserted in order from smallest
to largest or vice versa, the tree won’t really be a a tree at all, it would
be a linear list. This called degenerate tree.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Search Trees

Search (cont.)

« A pilcture:
find(25) find(76)

Y
—_— — — ———
-~
r
'-.- —
LY
W
Y
b
I
- o
* |
k

By: Sayed Hassan Adelyar

Binary Search Trees

2
S
L
e
—
o
>
<
O
3
% e O 2
o
e
-]
-
O
>
S
d
n
@©
d
@©
)

By: Sayed Hassan Adelyar

: 5 August, 2010

Balancing a BST

Binary Search Trees
= O (log n) = If tree Is balanced.

= In worst case O (n).

= Full binary tree - a binary tree in which all of the
eaves are on the same level and every non-leaf
node has 2 children.

= Complete binary tree : a binary tree that is either
full or full through the next-to-last level with the
leaves on the last level as far to the left as
possible.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

: 5 August, 2010

Tree terminolog

Binary Search Trees
Path: Sequence ot nodes.

Root: The node at the top of the tree Is called the root.
There is only one root in a tree.

= Parent: the node above it is called the parent of the node.
= Child: The nodes below a given node are called its children.

L_eaf: a node that has no children is called a leaf node or
simply a leaf.

= Sub-tree: Any node may be considered to be the root of a
sub-tree, which consists of its children and children’s
children, and so on.

= Visiting: A node is visited when program control arrives at
the node, usually for the purpose of carrying out some

0l0]= IANOGIAMIAISEAININIS [(1C AN IAIS c Ol OnNe O
J NJ U @ = S = AD LU o Un = = AT U0 = = = =

its data fields or display,it...... .

Data Structures and Algorithms
O

yar

N/ : 5 August, 2010

Binary Search Trees
= Traversing: To traverse a tree means to visit all the
nodes in some specified order. For example, you
might visit all the nodes in order of ascending key
value.

= Levels: The level of a particular node refers to
NoOwW many generations the node is from the root.

= Keys: One data field in an object is usually
designated a key value. This value is used to
search for the item or perform other operation on It.

= Unbalanced Trees: Some of the trees you
generate are unbalanced; that Is, they have most
of their nodes on one side of the root or the other.

By: Sayed Hassan Adelyar

Data Structures and Algorithms

i Un-balanced Binary Search Tree

Binary Search Trees

Data Structures and Algorithms

By: Sayed Hassan Adelyar

WA : 5 August, 2010

Binary Search Trees
= Representing the Iree In Java code:

= There are several approaches to representing a tree in the computer’'s
memory. The most common is to store the nodes at unrelated locations in
memory, and connect them using references in each node that point to its
children.

= The node class:

= First, we need a class of node object. These objects contain the data
representing the objects being stored and also references to each of the
node’s two children.

class element

{
Int 1dno;
String sthame;
element leftchild;
element rightchild;

}

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees

class element

{
student stl;
element leftchild;
element rightchild;

}

class student

{
Int idno;
String stname,

= There Is another way to define node:

;

By: Sayed H

assan Adelyar

Java code for Inserting a Noc!e

Binary Search Trees
public void insert(int 1d, String name

{

element newstudent = new element ();
newstudent.idno= id;
newstudent.sthame = name;
if(root == null)

root = newstudent;
else

{

element current = root;
element parent;
while(true)

{

Data Structures and Algorithms

parent = current;
if(id < current.idno)

{

current = current.leftChild;

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Ir(curren

parent.leftChild = newstudent;
return;

}
}
else
{
current = current.rightChild;
if(current == null)
{
parent.rightChild = newstudent;
return;

By: Sayed Hassan Adelyar

i Java code for finding a Node

Binary Search Trees
public element find(int key)

{

7))
= element current = root;
= while(current.idno != key)
= {
< . .
= if(key < current.idno)
ﬁ current = current.leftChild;
= else
‘g current = current.rightChild;
= if(current == null)
o return null;
©
0 }
return current;

}

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary

: 5 August, 2010

Deleting an Item from a BST

Search Trees

for binary search trees.

= Start by finding the node you want to delete.
When you have found the node, there are three
cases to consider:

o I
o I
o I

ne node to be de
ne node to be de

ne node to be de

= Most complicated common operation required

eted Is a leaf (has no children).

eted has one chi
eted has two chi

= The first case Is easy. You simp
appropriate child field in the node’s parent to

d.
dren.

y change the

point to null.

By: Sayed Hassan Adelyar

: 5 August, 2010

Binary Search Trees

= [he second case Isn’t so bad either. The node has
only two connections: to its parent & to its only
cmg You have to connect its parent directly to its
child.

= |If the deleted node hade two children, you can’t
just replace i1t with one of these children, at least If
the child has its own children. To delete a node with
two children, replace the node with its in-order
successor.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Binary Search Trees

element current = root;
element parent = root;
boolean isleftChild = true;

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees
while(current.idno = key

parent = current;
if(key < current.idno)
{
isleftChild = true;
current = current.leftChild:

}

else
{
IsleftChild = false;
current = current.rightChild;
}
if(current == null)
return false;

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees
Ir(current.ie Ild == null && current.rig

{
if(current == root)
root = null;
else if(isleftChild)
parent.leftChild = null;
else
parent.rightChild = null;
}

else if(current.rightChild == null)
if(current == root)
root = current.leftChild;
else if(isleftChild)
parent.leftChild = current.leftChild;
else
parent.rightChild = current.leftChild;

By: Sayed Hassan Adelyar

Data Structures and Algorithms

if(current == root)
root = current.rightChild;
else if(isleftChild)
parent.leftChild = current.rightChild,;
else
parent.rightChild = current.rightChild;
else
{
element successor = getSuccessor(current);
if(current == root)
root = successor;
else if(isleftChild)
parent.leftChild = successor;
else
parent.rightChild = successor;
successor.leftChild = current.leftChild;

}

return true;

}

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees
private element getSuccessor(element delelement) {

element successorParent = delelement;
element successor = delelement;
element current = delelement.rightChild,;
while(current !=null) {
successorParent = successor;
successor = current;
current = current.leftChild;
}
if(successor != delelement.rightChild) {
successorParent.leftChild = successor.rightChild,;
successor.rightChild = delelement.rightChild,;
}

return successor;

} By: Sayed Hassan Adelyar

Y sAugust, 2010

Finding maximum and minimum values

Binary Search Trees
Pubic element maximum()

{
node current, last;
current = root;
while (current !=null)
{
last = current;
current = current.rightchild;

}

return last;

Data Structures and Algorithms

—

By: Sayed Hassan Adelyar

0 sAugust, 2010

Finding maximum and minimum values

Binary Search Trees
Pubic element minimum()

{
element current, last;
current = root;
while (current !=null)
{
last = current;
current = current.leftchild;

}

return last;

Data Structures and Algorithms

—

By: Sayed Hassan Adelyar

sAugust 2010
Java code for displaying Tree

Binary Search Trees
public void displayTree()

{
stack globalStack = new stack(25);
globalStack.push(root);
int nBlanks = 32;
boolean isRowEmpty = false;
System.out.printin("..............ccoeeiiiie, "),
while(isRowEmpty == false)
{
stack localStack = new stack(25);
ISROwEmpty = true;
for(int j=0; j<nBlanks; j++)
System.out.print(" ");

Data Structures and Algorithms

By: Sayed Hassan Adelyar

A : 5 August, 2010

Binary Search Trees
while(globalStack.isempty() == false) {

treeitem temp = globalStack.pop();
If(temp != null) {
System.out.print(temp.idno);
localStack.push(temp.leftchild);
localStack.push(temp.rightchild);
If(temp.leftchild '= null || temp.rightchild != null)
ISRowEmpty = false;

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees
else {

System.out.print(".....");
localStack.push(null);
localStack.push(null);

}

for(int j=0; j<nBlanks*2-2;j++)
System.out.print(" ");

}
System.out.printin();
nBlanks /= 2;

while(localStack.isempty() == false)
globalStack.push(localStack.pop());

}

System.out.printin(".................. ");

} By: Sayed Hassan Adelyar

A : 5 August, 2010

Binary Search Trees
Traversing the Tree:

Traversing a tree means visiting each node in a
specified order. There are three simple ways to
traverse a tree:

o Preorder,

o Inorder,

o Postorder,

= The simplest way to carry out a traversal Is the
use of recursion.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

N/ 5 August, 2010

Binary Search Trees
n-order lTraversal:

= Tree Nodes have two or more child nodes; unlike our list
node, which only had one child.

= Anin-order traversal of a binary search tree will cause

all the nodes to be visited in ascending order based on
their key values. If you want to create a sorted list of the
data in a binary tree, this is one way to do it. The
simplest way to carry out a traversal is the use of
recursion. The method needs to do only three things:

1. call itself to traverse the node’s left subtree.

2. Visit the node .

3. call itself to traverse the node’s right subtree.

Preorder and postorder traversals:

= These traversal are useful if you are writing programs
that parse or analyze Algebric expression.

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Data Structures and Algorithms

Binary Search Trees
public void traverse(int traverse l'ype

{

switch(traverseType)

{
case 1: System.out.print("\nPreorder traversal: ");
preOrder(root);
break;
case 2: System.out.print("\nInorder traversal: ");
inOrder(root);
break;
case 3: System.out.print("\nPostorder traversal: ");
postOrder(root);
break;

}
System.out.printin();

}

By: Sayed Hassan Adelyar

Binary Search Trees
private void preOrder(element localRoo

o

< If(localRoot != null)

: {

< System.out.print(localRoot.iData + " ");
£ preOrder(localRoot.leftChild);
3 preOrder(localRoot.rightChild);
2 }

=N]

n

D

®©

)

By: Sayed Hassan Adelyar

Binary Search Trees
private void inOrder(element localRoo

o

< If(localRoot != null)

§, {

< InOrder(localRoot.leftChild);
£ System.out.print(localRoot.iData + " ");
3 InOrder(localRoot.rightChild);
2 }

=y]

7p

i

©

O

By: Sayed Hassan Adelyar

Binary Search Trees
private void postOrder(element localRoo

o

I= If(localRoot = null)

: {

< postOrder(localRoot.leftChild);
£ postOrder(localRoot.rightChild);
5 System.out.print(localRoot.iData + " ");
= }

=y]

7p

i

©

O

By: Sayed Hassan Adelyar

Complete Java program for T e

Binary Search Trees
class element

{
Int 1dno;
String sthame;
element leftchild;
element rightchild,;

}

Data Structures and Algorithms

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees
class binaryTree {

public element root;
public void insert(int id, String name)

{

element newstudent = new element ();
newstudent.idno= id;
newstudent.stname = name;
if(root == null)

root = newstudent;
else
{

element current = root;

element parent;

By: Sayed Hassan Adelyar

Y 5 August, 2010

B public void displayTree() {

parent = current; - .
g if(id < current.idno) morder(rOOt)’
é { leftchild }
— current = current.lettchild; - - -
S if(current == null) public void inOrder(element
< {
;(3 parent.leftchild = newstudent; |O(Ea| ROOt) {
S , e If(localRoot !=null) {
d) inOrder(localRoot.leftchild):;

| . .

5 L System.out.print(localRoot.idno
g current = current.rightchild; + " ")-
n if(current == null) 7]]
& { InOrder(localRoot.rightchild);
@© parent.rightchild = newstudent;
0 return; }

! }
b)

By: Say¢d Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees

class binaryTreeApp
public static void main(String [] args) {
binaryTree treel = new binaryTree();
treel.insert(80, "Sharif");
treel.insert(30, "Shams");
treel.insert(120, “Jalal");
treel.insert(125, “Jamal");
treel.insert(100, “Jawed");
treel.insert(90, “Jamil");
treel.insert(95, “Zabi");
treel.insert(60, “Wali");
treel.insert(20, “Khan");
treel.insert(10, “Karim");
treel.insert(45, “Sultan");
treel.insert(40, “Zobair");
treel.displayTree();

By: Sayed Hassan Adelyar

N/ 5 August, 2010

Binary Search Trees
m The efficiency of Binary Trees.

= As you have seen, most operations with trees involve
descending the tree from level to level to find a
particular node. How long does it take to do this? In a
full tree, about half the nodes are on the bottom
level.

= Thus, about half of all searches or insertions or
deletions require finding a node on the lowest level.
An additional quarter of these operations require
finding the node on the next-to-lowest level, & so on.
During a search we need to visit one node on each
level. So we can get a good idea how long it takes to
carry out these operations by knowing how many
levels there are:

By: Sayed Hassan Adelyar

Data Structures and Algorithms

Binary Search Trees

1 1
%)

N 3 2
=l 7 3
£ 15 4
< [5
o

C Y

@©

i 1023 10
=N 32767 15
© [

>

=8 1048575 20
(T .

8 33554432 25

1073741824 30

By: Sayed Hassan Adelyar

: 5 August, 2010

Binary Search Trees

IS Situation Is very much like the ordered array.
that case the number of comparison for a binary
search was approximately equal to the base 2
logarithm of the number of cells in the array. Thus,
the time needed to carry out the common tree
operations is proportional to the base 2 log of N.

Data Structures and Algorithms

By: Sayed Hassan Adelyar

