
5 August, 2010
1 Trees

Binary Search Trees

s

Trees are one of the fundamental data structure.

A
lg

or
ith

m Combines the advantage of array and a linked
list.

re
s

an
d

A They are called that, because if you try to visualize
the structure, it kind of looks like a tree (root,
b h d l f)

ta
 S

tr
uc

tu branches, and leafs).
Trees are node based data structures, meaning

D
at that they're made out of small parts called nodes.

Tree Nodes have two or more child nodes.

By: Sayed Hassan Adelyar

Nodes are connected by edges.

5 August, 2010
2

Binary Search Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: Sayed Hassan Adelyar

5 August, 2010
3

Binary Search Trees

s

Recursive structures

A
lg

or
ith

m Sub-trees are disjoint. That is they don’t share
any nodes. In other word, there is a unique path
f th t f t t th d f th

re
s

an
d

A from the root of a tree to any other node of the
tree. This means that every node (except the
root) has a unique parent

ta
 S

tr
uc

tu root) has a unique parent.

D
at

By: Sayed Hassan Adelyar

5 August, 2010
4

Binary Search Trees

s

In computer programs, nodes often represent
h titi l i li ti

A
lg

or
ith

m such entities as people, car, airline reservations,
and so on.
I OOP l lik J th l d

re
s

an
d

A In an OOP language like Java these real-word
entities are represented by objects.
Th li (d) b t th d t

ta
 S

tr
uc

tu The lines (edges) between the nodes represent
the way the nodes are related.

D
at

By: Sayed Hassan Adelyar

5 August, 2010
5 Binary Trees

Binary Search Trees

s

Each node is capable of two children.

A
lg

or
ith

m Represent an important technique for handling
structures such as files and directories, dictionaries,
and symbol tables

re
s

an
d

A and symbol tables.
If every node in a tree can have at most two children,
the tree is called a binary tree The two children of

ta
 S

tr
uc

tu the tree is called a binary tree. The two children of
each node in a binary tree are called the left child
and the right child. A node in binary tree doesn’t

D
at

and the right child. A node in binary tree doesn t
necessarily have the maximum of two children; it may
have only a left child, or on a right child, or it can

By: Sayed Hassan Adelyar

have no children at all.

5 August, 2010
6

Binary Search Trees

s

Binary tree is a dynamic data structure, that is
memory for its nodes is allocated and de

A
lg

or
ith

m memory for its nodes is allocated and de-
allocated during program execution.
Maximum number of node at any level n is 2n

re
s

an
d

A Maximum number of node at any level n is 2n

The maximum number of level in n number of
node tree is n

ta
 S

tr
uc

tu node tree is n.
The minimum number of level in n number of node
tree is log (n)

D
at tree is log (n).

By: Sayed Hassan Adelyar

5 August, 2010
7 Binary Search Tree(BST)

Binary Search Trees

s

To support O (log n) search, we add a property to binary tree:
Smaller and equal value to left and greater values to right

A
lg

or
ith

m Smaller and equal value to left, and greater values to right.
In this case BST has the benefits of both sorted array and linked
lists.
BST i bl f li i i hi h h i b

re
s

an
d

A BSTs are suitable for applications in which search time must be
minimized or in which the nodes are not necessarily processed in
sequential order.

ta
 S

tr
uc

tu Tradeoff: BSTs with its extra reference in each node, takes up more
memory space than a single linked list. In addition, the algorithms
for manipulating the tree are somewhat more complicated.

D
at

p g p
In its worst case if the elements were inserted in order from smallest
to largest or vice versa, the tree won’t really be a a tree at all, it would
be a linear list This called degenerate tree

By: Sayed Hassan Adelyar

be a linear list. This called degenerate tree.

5 August, 2010
8

Binary Search Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: Sayed Hassan Adelyar

5 August, 2010
9

Binary Search Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: Sayed Hassan Adelyar

5 August, 2010
10 Balancing a BST

Binary Search Trees

s

O (log n) if tree is balanced.

A
lg

or
ith

m In worst case O (n).
Full binary tree a binary tree in which all of the

re
s

an
d

A leaves are on the same level and every non-leaf
node has 2 children.

ta
 S

tr
uc

tu Complete binary tree : a binary tree that is either
full or full through the next-to-last level with the

D
at leaves on the last level as far to the left as

possible.

By: Sayed Hassan Adelyar

5 August, 2010
11 Tree terminology

Binary Search Trees

s

Path: Sequence of nodes.
Root: The node at the top of the tree is called the root

A
lg

or
ith

m Root: The node at the top of the tree is called the root.
There is only one root in a tree.
Parent: the node above it is called the parent of the node.

re
s

an
d

A Child: The nodes below a given node are called its children.
Leaf: a node that has no children is called a leaf node or
simply a leaf

ta
 S

tr
uc

tu simply a leaf.
Sub-tree: Any node may be considered to be the root of a
sub-tree, which consists of its children and children’s
hild d

D
at children, and so on.

Visiting: A node is visited when program control arrives at
the node, usually for the purpose of carrying out some

By: Sayed Hassan Adelyar

, y p p y g
operation on the node, such as checking the value of one of
its data fields or display it.

5 August, 2010
12

Binary Search Trees

s

Traversing: To traverse a tree means to visit all the
nodes in some specified order For example you

A
lg

or
ith

m nodes in some specified order. For example, you
might visit all the nodes in order of ascending key
value.

re
s

an
d

A

Levels: The level of a particular node refers to
how many generations the node is from the root.

ta
 S

tr
uc

tu Keys: One data field in an object is usually
designated a key value. This value is used to
search for the item or perform other operation on it

D
at search for the item or perform other operation on it.

Unbalanced Trees: Some of the trees you
generate are unbalanced; that is they have most

By: Sayed Hassan Adelyar

generate are unbalanced; that is, they have most
of their nodes on one side of the root or the other.

5 August, 2010
13 Un-balanced Binary Search Tree

Binary Search Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: Sayed Hassan Adelyar

5 August, 2010
14

Binary Search Trees

s

Representing the Tree in Java code:
There are several approaches to representing a tree in the computer’s
memory The most common is to store the nodes at unrelated locations in

A
lg

or
ith

m memory. The most common is to store the nodes at unrelated locations in
memory, and connect them using references in each node that point to its
children.
The node class:

re
s

an
d

A First, we need a class of node object. These objects contain the data
representing the objects being stored and also references to each of the
node’s two children.

class element

ta
 S

tr
uc

tu class element
{

int idno;
String stname;

D
at

g ;
element leftchild;
element rightchild;
}

By: Sayed Hassan Adelyar

5 August, 2010
15

Binary Search Trees

s

There is another way to define node:
class element

A
lg

or
ith

m class element
{

student st1;

re
s

an
d

A ;
element leftchild;
element rightchild;

ta
 S

tr
uc

tu }
class student
{D

at {
int idno;
String stname;

By: Sayed Hassan Adelyar

String stname;
}

5 August, 2010
16 Java code for Inserting a Node

Binary Search Trees

s

public void insert(int id, String name)
{

element newstudent = new element ();

A
lg

or
ith

m element newstudent = new element ();
newstudent.idno= id;
newstudent.stname = name;
if(root == null)

re
s

an
d

A root = newstudent;
else
{

element current = root;

ta
 S

tr
uc

tu element current = root;
element parent;
while(true)
{

D
at parent = current;

if(id < current.idno)
{

current = current.leftChild;

By: Sayed Hassan Adelyar

current current.leftChild;

5 August, 2010
17

Binary Search Trees

s

if(current == null)
{

l f Child d

A
lg

or
ith

m parent.leftChild = newstudent;
return;

}
}

re
s

an
d

A }
else
{

current = current rightChild;

ta
 S

tr
uc

tu current current.rightChild;
if(current == null)
{

parent.rightChild = newstudent;

D
at

p g ;
return;

}
}

By: Sayed Hassan Adelyar

}
}

}

5 August, 2010
18 Java code for finding a Node

Binary Search Trees

s

public element find(int key)
{

A
lg

or
ith

m

{
element current = root;
while(current.idno != key)
{

re
s

an
d

A {
if(key < current.idno)

current = current.leftChild;
else

ta
 S

tr
uc

tu

else
current = current.rightChild;

if(current == null)
return null;

D
at

return null;
}
return current;

}

By: Sayed Hassan Adelyar

}

5 August, 2010
19 Deleting an Item from a BST

Binary Search Trees

s

Most complicated common operation required
f bi h t

A
lg

or
ith

m for binary search trees.
Start by finding the node you want to delete.
Wh h f d th d th th

re
s

an
d

A When you have found the node, there are three
cases to consider:

Th d t b d l t d i l f (h hild)

ta
 S

tr
uc

tu The node to be deleted is a leaf (has no children).
The node to be deleted has one child.
The node to be deleted has t o children

D
at The node to be deleted has two children.

The first case is easy. You simply change the
appropriate child field in the node’s parent to

By: Sayed Hassan Adelyar

appropriate child field in the node’s parent to
point to null.

5 August, 2010
20

Binary Search Trees

s

The second case isn’t so bad either. The node has
only two connections: to its parent & to its only

A
lg

or
ith

m only two connections: to its parent & to its only
child. You have to connect its parent directly to its
child.

re
s

an
d

A If the deleted node hade two children, you can’t
just replace it with one of these children, at least if
the child has its own children To delete a node with

ta
 S

tr
uc

tu the child has its own children. To delete a node with
two children, replace the node with its in-order
successor.

D
at

By: Sayed Hassan Adelyar

5 August, 2010
21

Binary Search Trees

s

public boolean delete(int key)
{

A
lg

or
ith

m {
element current = root;
element parent = root;

re
s

an
d

A p
boolean isleftChild = true;

ta
 S

tr
uc

tu
D

at

By: Sayed Hassan Adelyar

5 August, 2010
22

Binary Search Trees

s

while(current.idno != key)
{

A
lg

or
ith

m parent = current;
if(key < current.idno)
{

isleftChild = true;

re
s

an
d

A isleftChild = true;
current = current.leftChild;

}
else

ta
 S

tr
uc

tu else
{

isleftChild = false;
current = current.rightChild;

D
at

g ;
}
if(current == null)

return false;

By: Sayed Hassan Adelyar

}

5 August, 2010
23

Binary Search Trees

s

if(current.leftChild == null && current.rightChild == null)
{

if(current == root)

A
lg

or
ith

m if(current == root)
root = null;

else if(isleftChild)
parent.leftChild = null;

re
s

an
d

A else
parent.rightChild = null;

}
else if(current rightChild == null)

ta
 S

tr
uc

tu else if(current.rightChild == null)
if(current == root)

root = current.leftChild;
else if(isleftChild)

D
at parent.leftChild = current.leftChild;

else
parent.rightChild = current.leftChild;

By: Sayed Hassan Adelyar

5 August, 2010
24

Binary Search Trees

s

else if(current.leftChild == null)
if(current == root)

root = current.rightChild;

A
lg

or
ith

m

root current.rightChild;
else if(isleftChild)

parent.leftChild = current.rightChild;
else

parent.rightChild = current.rightChild;

re
s

an
d

A parent.rightChild current.rightChild;
else
{

element successor = getSuccessor(current);
if(current == root)

ta
 S

tr
uc

tu

if(current root)
root = successor;

else if(isleftChild)
parent.leftChild = successor;

else

D
at

else
parent.rightChild = successor;

successor.leftChild = current.leftChild;
}
return true;

By: Sayed Hassan Adelyar

return true;
}

5 August, 2010
25

Binary Search Trees

s

private element getSuccessor(element delelement) {
element successorParent = delelement;

A
lg

or
ith

m element successor = delelement;
element current = delelement.rightChild;

while(current !=null) {

re
s

an
d

A while(current ! null) {
successorParent = successor;
successor = current;
current = current leftChild;

ta
 S

tr
uc

tu current = current.leftChild;
}
if(successor != delelement.rightChild) {

f C C

D
at successorParent.leftChild = successor.rightChild;

successor.rightChild = delelement.rightChild;
}

By: Sayed Hassan Adelyar

return successor;
}

5 August, 2010
26 Finding maximum and minimum values

Binary Search Trees

s

Pubic element maximum()
{

A
lg

or
ith

m {
node current, last;
current = root;

re
s

an
d

A current = root;
while (current !=null)
{

ta
 S

tr
uc

tu {
last = current;
current = current rightchild;

D
at current current.rightchild;

}
return last;

By: Sayed Hassan Adelyar

return last;
}

5 August, 2010
27 Finding maximum and minimum values

Binary Search Trees

s

Pubic element minimum()
{

A
lg

or
ith

m {
element current, last;
current = root;

re
s

an
d

A current = root;
while (current !=null)
{

ta
 S

tr
uc

tu {
last = current;
current = current.leftchild;

D
at

current current.leftchild;
}
return last;

By: Sayed Hassan Adelyar

;
}

5 August, 2010
28 Java code for displaying Tree

Binary Search Trees

s

public void displayTree()
{

A
lg

or
ith

m

{
stack globalStack = new stack(25);
globalStack.push(root);
int nBlanks = 32;

re
s

an
d

A int nBlanks 32;
boolean isRowEmpty = false;
System.out.println("................................");
while(isRowEmpty == false)

ta
 S

tr
uc

tu while(isRowEmpty == false)
{

stack localStack = new stack(25);

D
at isRowEmpty = true;

for(int j=0; j<nBlanks; j++)
System.out.print(" ");

By: Sayed Hassan Adelyar

5 August, 2010
29

Binary Search Trees

s

while(globalStack.isempty() == false) {
t it t l b lSt k ()

A
lg

or
ith

m treeitem temp = globalStack.pop();
if(temp != null) {

System out print(temp idno);

re
s

an
d

A System.out.print(temp.idno);
localStack.push(temp.leftchild);
localStack push(temp rightchild);

ta
 S

tr
uc

tu localStack.push(temp.rightchild);
if(temp.leftchild != null || temp.rightchild != null)

isRowEmpty = false;

D
at isRowEmpty = false;

}

By: Sayed Hassan Adelyar

5 August, 2010
30

Binary Search Trees

s

else {
System.out.print(".....");

A
lg

or
ith

m

y p ()
localStack.push(null);
localStack.push(null);

}

re
s

an
d

A }
for(int j=0; j<nBlanks*2-2;j++)

System.out.print(" ");
}

ta
 S

tr
uc

tu }
System.out.println();
nBlanks /= 2;

(S () f)

D
at while(localStack.isempty() == false)

globalStack.push(localStack.pop());
}

By: Sayed Hassan Adelyar

System.out.println("..................");
}

5 August, 2010
31

Binary Search Trees

s

Traversing the Tree:

A
lg

or
ith

m Traversing a tree means visiting each node in a
specified order. There are three simple ways to
t t

re
s

an
d

A traverse a tree:
Preorder,
I d

ta
 S

tr
uc

tu Inorder,
Postorder,

Th i l t t t t l i thD
at The simplest way to carry out a traversal is the

use of recursion.

By: Sayed Hassan Adelyar

5 August, 2010
32

Binary Search Trees

s

In-order Traversal:
Tree Nodes have two or more child nodes; unlike our list

A
lg

or
ith

m

Tree Nodes have two or more child nodes; unlike our list
node, which only had one child.
An in-order traversal of a binary search tree will cause
all the nodes to be visited in ascending order based on

re
s

an
d

A all the nodes to be visited in ascending order based on
their key values. If you want to create a sorted list of the
data in a binary tree, this is one way to do it. The
simplest way to carry out a traversal is the use of

ta
 S

tr
uc

tu simplest way to carry out a traversal is the use of
recursion. The method needs to do only three things:

1. call itself to traverse the node’s left subtree.
2 visit the node

D
at 2. visit the node .

3. call itself to traverse the node’s right subtree.
Preorder and postorder traversals:

Th t l f l if iti
By: Sayed Hassan Adelyar

These traversal are useful if you are writing programs
that parse or analyze Algebric expression.

5 August, 2010
33

Binary Search Trees

s

public void traverse(int traverseType)
{

i h(T)

A
lg

or
ith

m switch(traverseType)
{

case 1: System.out.print("\nPreorder traversal: ");
preOrder(root);

re
s

an
d

A preOrder(root);
break;
case 2: System.out.print("\nInorder traversal: ");
inOrder(root);

ta
 S

tr
uc

tu inOrder(root);
break;
case 3: System.out.print("\nPostorder traversal: ");
postOrder(root);

D
at

p ();
break;

}
System.out.println();

By: Sayed Hassan Adelyar

}

5 August, 2010
34

Binary Search Trees

s

private void preOrder(element localRoot)
{

A
lg

or
ith

m

{
if(localRoot != null)
{

System out print(localRoot iData + " ");

re
s

an
d

A System.out.print(localRoot.iData +);
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);

}

ta
 S

tr
uc

tu }
}

D
at

By: Sayed Hassan Adelyar

5 August, 2010
35

Binary Search Trees

s

private void inOrder(element localRoot)
{

A
lg

or
ith

m

{
if(localRoot != null)
{

inOrder(localRoot leftChild);

re
s

an
d

A inOrder(localRoot.leftChild);
System.out.print(localRoot.iData + " ");
inOrder(localRoot.rightChild);

}

ta
 S

tr
uc

tu }
}

D
at

By: Sayed Hassan Adelyar

5 August, 2010
36

Binary Search Trees

s

private void postOrder(element localRoot)
{

A
lg

or
ith

m

{
if(localRoot != null)
{

postOrder(localRoot leftChild);

re
s

an
d

A postOrder(localRoot.leftChild);
postOrder(localRoot.rightChild);
System.out.print(localRoot.iData + " ");

}

ta
 S

tr
uc

tu }
}

D
at

By: Sayed Hassan Adelyar

5 August, 2010
37 Complete Java program for Tree

Binary Search Trees

s

class element

A
lg

or
ith

m {
int idno;

re
s

an
d

A

String stname;
element leftchild;

ta
 S

tr
uc

tu

;
element rightchild;
}

D
at }

By: Sayed Hassan Adelyar

5 August, 2010
38

Binary Search Trees

s

class binaryTree {
public element root;

A
lg

or
ith

m

p
public void insert(int id, String name)
{

element newstudent = new element ();

re
s

an
d

A element newstudent new element ();
newstudent.idno= id;
newstudent.stname = name;
if(root == null)

ta
 S

tr
uc

tu if(root == null)
root = newstudent;

else
{

D
at {

element current = root;
element parent;

By: Sayed Hassan Adelyar

5 August, 2010
39

Binary Search Trees

s

while(true)
{

parent = current;
public void displayTree() {

inOrder(root);

A
lg

or
ith

m if(id < current.idno)
{

current = current.leftchild;
if(current == null)
{

inOrder(root);
}

public void inOrder(element
l lR t) {

re
s

an
d

A {
parent.leftchild = newstudent;
return;

}
}

l

localRoot) {
if(localRoot != null) {

inOrder(localRoot.leftchild);

ta
 S

tr
uc

tu else
{

current = current.rightchild;
if(current == null)
{

System.out.print(localRoot.idno
+ " ");

inOrder(localRoot rightchild);

D
at

{
parent.rightchild = newstudent;
return;

}
}

}

inOrder(localRoot.rightchild);
}

}

By: Sayed Hassan Adelyar

}
}

} }

5 August, 2010
40

Binary Search Trees

s

class binaryTreeApp {
public static void main(String [] args) {
binaryTree tree1 = new binaryTree();

A
lg

or
ith

m binaryTree tree1 = new binaryTree();
tree1.insert(80, "Sharif");
tree1.insert(30, "Shams");
tree1.insert(120, “Jalal");
t 1 i t(125 “J l")

re
s

an
d

A tree1.insert(125, “Jamal");
tree1.insert(100, “Jawed");
tree1.insert(90, “Jamil");
tree1.insert(95, “Zabi");

ta
 S

tr
uc

tu tree1.insert(60, “Wali");
tree1.insert(20, “Khan");
tree1.insert(10, “Karim");
tree1.insert(45, “Sultan");

D
at

(,);
tree1.insert(40, “Zobair");
tree1.displayTree();

}

By: Sayed Hassan Adelyar

}
}

5 August, 2010
41

Binary Search Trees

s

The efficiency of Binary Trees:
As you have seen most operations with trees involve

A
lg

or
ith

m As you have seen, most operations with trees involve
descending the tree from level to level to find a
particular node. How long does it take to do this? In a
f ll t b t h lf th d th b tt

re
s

an
d

A full tree, about half the nodes are on the bottom
level.
Thus, about half of all searches or insertions or

ta
 S

tr
uc

tu

Thus, about half of all searches or insertions or
deletions require finding a node on the lowest level.
An additional quarter of these operations require
finding the node on the next-to-lowest level & so on

D
at finding the node on the next-to-lowest level, & so on.

During a search we need to visit one node on each
level. So we can get a good idea how long it takes to

t th ti b k i h
By: Sayed Hassan Adelyar

carry out these operations by knowing how many
levels there are:

5 August, 2010
42

Binary Search Trees

s

Number of nodes Number of levels
1 1
3 2

A
lg

or
ith

m 3 2
7 3
15 4
31 5

re
s

an
d

A 31 5
… …
1023 10
32767 15

ta
 S

tr
uc

tu 32767 15
… …
1048575 20
… …

D
at 33554432 25

… …
1073741824 30

By: Sayed Hassan Adelyar

5 August, 2010
43

Binary Search Trees

s

This situation is very much like the ordered array. In
that case the number of comparison for a binary

A
lg

or
ith

m

p y
search was approximately equal to the base 2
logarithm of the number of cells in the array. Thus,
the time needed to carry out the common tree

re
s

an
d

A the time needed to carry out the common tree
operations is proportional to the base 2 log of N.

ta
 S

tr
uc

tu
D

at

By: Sayed Hassan Adelyar

