
10 June, 2010
1 Graph

Graph
One of the most versatile structures.

go
rit

hm
s Dictated by a physical or abstract problem.

Example of such problem can be:

ur
es

 &
 A

l Nodes in a graph may represent cities, while edges
may represent airline flight routes between the cities.
Individual tasks necessary to complete a project In the

at
a

St
ru

ct Individual tasks necessary to complete a project. In the
graph, nodes may represent tasks, while directed
edges indicate which task must be completed before

D
a g p

another.
Internet routes.

By: S. Hassan Adelyar

10 June, 2010
2 Graph Terminology

Graph
Adjacency:

go
rit

hm
s Two vertices are said to be adjacent to one

another if they are connected by a single edge.

ur
es

 &
 A

l

Paths:
A path is a sequence of edges

at
a

St
ru

ct A path is a sequence of edges.
Connected graphs:

A h i id b d if h i lD
a A graph is said to be connected if there is at least

one path from every vertex to every other vertex.

By: S. Hassan Adelyar

Directed and weighted graphs:

10 June, 2010
3 Representing a graph in a program

Graph
Vertices: class vertex

{

go
rit

hm
s It is usually

convenient to
t t

{
public char label;
public Boolean wasvisited;

ur
es

 &
 A

l represent a vertex
by an object of a
vertex class

public vertex(char lab)
{

label = lab;

at
a

St
ru

ct vertex class. ;
wasvisited = false;

}
}D

a }

By: S. Hassan Adelyar

10 June, 2010
4

Graph
vertex object can be placed in an array and

f d t i th i i d b Th

go
rit

hm
s referred to using their index number. The

vertices might also be placed in a list or some
other data structure

ur
es

 &
 A

l other data structure.

at
a

St
ru

ct
D

a

By: S. Hassan Adelyar

10 June, 2010
5

Graph
Edges:

In a bi t h d has a i of t hild

go
rit

hm
s In a binary tree, each node has a maximum of two children,

but in a graph each vertex may be connected to an
arbitrary number of other vertices.

ur
es

 &
 A

l

To model this sort of free-form organization, two methods
are commonly used for graphs:

Adjacency Matrix

at
a

St
ru

ct Adjacency Matrix
Adjacency List

The Adjacency Matrix:

D
a j y

An adjacency matrix is a two-dimensional array in which the
elements indicate whether an edge is present between two
vertices. If a graph has N vertices, the adjacency matrix is an

By: S. Hassan Adelyar

g p , j y
NxN array. See the following example:

10 June, 2010
6

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

A B C D

D
a A 0 1 1 1

B 1 0 0 1
C 1 0 0 0
D 1 1 0 0

By: S. Hassan Adelyar

D 1 1 0 0

10 June, 2010
7

Graph
The adjacency list:

go
rit

hm
s The list in adjacency list refers to a linked list.

Each individual list shows what vertices a given

ur
es

 &
 A

l vertex is adjacent to. Following is the adjacency
list for the above graph:
V Li C i i Adj V

at
a

St
ru

ct Vertex List Containing Adjacent Vertex
A B C D

D
a

B A D
C A

By: S. Hassan Adelyar

D A B

10 June, 2010
8 Adding Vertices and Edges to a Graph

Graph
To add a vertex to a graph, you make anew

t bj t d I t it i t t

go
rit

hm
s vertex object and Insert it into your vertex array,

vertexList.
Th ti f t l k thi lik thi

ur
es

 &
 A

l The creation of a vertex looks something like this:
vertexList[nVerts++] = new vertex(‘F’);

at
a

St
ru

ct To insert the edge, you say:
adjMat[1][3] = 1;

D
a j [][]

adjMat[3][1] = 1;

By: S. Hassan Adelyar

10 June, 2010
9 The Graph Class

Graph
The following code shows a class contains methods for creating a vertex list
and an adjacency matrix, and for adding vertices and edges to a graph
object:

go
rit

hm
s object:

class graph
{

private final int max_verts = 20;

ur
es

 &
 A

l private vertex vertexlist[];
private int adjMat[][];
private int nverts;
public graph()

at
a

St
ru

ct public graph()
{

vertexlist = new vertex[max_verts];
adjMat = new[max verts][max verts];

D
a j [_][_];

nverts = 0;
for(int j=0; j<max_verts; j++)

for(int k=0; k<max_verts; k++)
djM t[j][k] 0

By: S. Hassan Adelyar

adjMat[j][k] =0;
}

10 June, 2010
10

Graph
public void addvertex(char lab)
{

go
rit

hm
s {

vertexlist[nverts++] = new vertex(lab);
}
public void addedge(int start int end)

ur
es

 &
 A

l public void addedge(int start, int end)
{

adjMat[start][end] = 1;
adjMat[end][start] = 1;

at
a

St
ru

ct adjMat[end][start] = 1;
}
public void displayvertex(int v)
{D

a {
System.out.print(vertexlist[v].label);

}

By: S. Hassan Adelyar

}

10 June, 2010
11 Searches

Graph
One of the most fundamental operations to perform on a
graph is finding which vertices can be reached from a

go
rit

hm
s graph is finding which vertices can be reached from a

specified vertex.
There are two common approaches to searching a graph:

ur
es

 &
 A

l There are two common approaches to searching a graph:
Depth-first search (DFS)
Breadth first search (BFS)

at
a

St
ru

ct Breadth-first search (BFS)
Both will eventually reach all connected vertices.
Th DFS i i l t d ith t k h th BFS iD

a The DFS is implemented with a stack, whereas the BFS is
implemented with a queue.

By: S. Hassan Adelyar

10 June, 2010
12 Depth-first search

Graph

The depth-first search

go
rit

hm
s The depth first search

uses a stack to remember
where it should go when it

ur
es

 &
 A

l

reaches a dead end.
Example: consider the
f ll i fi

at
a

St
ru

ct following figure:

D
a

By: S. Hassan Adelyar

10 June, 2010
13

Graph
To carry out the DFS:

Pick a starting point in this case vertex A

go
rit

hm
s Pick a starting point, in this case, vertex A.

You then do 3 things:
visit this vertex

ur
es

 &
 A

l visit this vertex,
push it onto a stack, and
mark it

at
a

St
ru

ct mark it.
Next you go to any vertex adjacent to A that has not yet
been visited.

D
a

You visit B, mark it, and push it on the stack. Now what?
You are at B, and you do the same thing as before: go
t dj t t th t h t b i it d Thi

By: S. Hassan Adelyar

to an adjacent vertex that has not been visited. This
lead you to F. We can call this process Rule 1.

10 June, 2010
14

Graph
Rule 1: If possible, visit an adjacent unvisited vertex,
mark it and push it on the stack

go
rit

hm
s mark it, and push it on the stack.

Applying Rule 1 again leads you to H. At this point,
however, you need to do something else because there

ur
es

 &
 A

l

are no unvisited vertices adjacent to H. Here is where is
Rule 2 comes in.
Rule 2: If you can’t follow Rule 1 then if possible pop

at
a

St
ru

ct Rule 2: If you can’t follow Rule 1, then, if possible, pop
a vertex off the stack.
Following this rule you pop H off the stack which brings

D
a Following this rule, you pop H off the stack, which brings

you back to F. F has no unvisited adjacent vertices, so
you pop it, and also B. Now only A is left on the stack.

By: S. Hassan Adelyar

Rule 3: If you can not follow Rule 1 or Rule 2, you are
done.

10 June, 2010
15

Graph
Event Stack
Visit A A
Visit B AB

go
rit

hm
s Visit B AB

Visit F ABF
Visit H ABFH
Pop H ABF
P F AB

ur
es

 &
 A

l Pop F AB
Pop B A
Visit C AC
Pop C A

at
a

St
ru

ct Visit D AD
Visit G ADG
Visit I ADGI
Pop I ADG

D
a p

Pop G AD
Pop D A
Visit E AE
Pop E A

By: S. Hassan Adelyar

Pop E A
Pop A
Done

10 June, 2010
16

Graph
The contents of the stack is the route you took
f th t ti t t t h

go
rit

hm
s from the starting vertex to get where you are.

As you move away from the starting vertex, you
push vertices as you go As you move back

ur
es

 &
 A

l push vertices as you go. As you move back
toward the starting vertex, you pop them. The
order in which you visit the vertices is

at
a

St
ru

ct order in which you visit the vertices is
ABFHCDGIE.

D
a

By: S. Hassan Adelyar

10 June, 2010
17 Java Code

Graph
The adjacency matrix is the key.
By going to the row for the specified vertex and

go
rit

hm
s By going to the row for the specified vertex and

stepping across the columns, you can pick out the
columns with a 1; the column number is the

b f dj t t

ur
es

 &
 A

l number of an adjacent vertex. You can then check
whether this vertex is unvisited. If so, you have found
what you want, the next vertex to visit. If no vertices

at
a

St
ru

ct

y ,
on the row are simultaneously 1 (adjacent) and also
unvisited, there are no unvisited vertices adjacent to the
specified vertex

D
a specified vertex.

We put the code for this process in the
getadjunvisitedvertex() method:

By: S. Hassan Adelyar

10 June, 2010
18

Graph
public int getadjunvisitedvertex(int v)

go
rit

hm
s {

for(int j =0; j<nverts; j++)

ur
es

 &
 A

l

if(adjMat[v][j] == 1 && vertexlist[j].wasvisited ==
false)

at
a

St
ru

ct return j;
return -1;

D
a return 1;

}

By: S. Hassan Adelyar

10 June, 2010
19

Graph
You can see how this code embodies the three

l li t d li It l til th t k i t

go
rit

hm
s rules listed earlier. It loops until the stack is empty.

Within the loop, it does four things:
It i th t t th t f th t k i

ur
es

 &
 A

l It examines the vertex at the top of the stack, using
peek().
It tries to find an unvisited neighbors of this vertex

at
a

St
ru

ct It tries to find an unvisited neighbors of this vertex.
If it does not find one, it pops the stack.

If it finds such a vertex it visits that vertex andD
a If it finds such a vertex, it visits that vertex and

pushes it onto the stack.

By: S. Hassan Adelyar

10 June, 2010
20

Graph
public void dfs()
{

vertexlist[0] wasvisited = true;

go
rit

hm
s vertexlist[0].wasvisited = true;

displayvertex(0);
thestack.push(0);
while (!thestack.isempty()) {

i t t dj i it d t (th t k k())

ur
es

 &
 A

l int v = getadjunvisitedvertex (thestack.peek());
if (v == -1) // if no such vertex,

thestack.pop(); // pop a new one
else

at
a

St
ru

ct {
vertexlist[v].wasvisited = true;
displayvertex(v);
thestack.push(v);

D
a p ();

}
}

for (int j=0; j<nverts; j++)

By: S. Hassan Adelyar

for (int j 0; j<nverts; j++)
vertexlist[j].wasvisited = false;

}

10 June, 2010
21

Graph
At the end of dfs(), we reset all the wasvisited
fl ill b d t df () i l t

go
rit

hm
s flags so we will be ready to run dfs() again later.

The stack should already be empty, so it does
not need to be reset

ur
es

 &
 A

l not need to be reset.
Now we have all the pieces of the graph class we
need Here is some code that creates a graph

at
a

St
ru

ct need. Here is some code that creates a graph
object, adds some vertices and edges to it, and
then performs a depth-first search:D

a then performs a depth-first search:

By: S. Hassan Adelyar

10 June, 2010
22

Graph
Graph thegraph = new graph();
Thegraph.addvertex(‘A’);

go
rit

hm
s Thegraph.addvertex(A);

Thegraph.addvertex(‘B’);
Thegraph.addvertex(‘C’);
Th h dd t (‘D’)

ur
es

 &
 A

l Thegraph.addvertex(‘D’);
Thegraph.addvertex(‘E’);
Thegraph addedge(0 1);

at
a

St
ru

ct

Thegraph.addedge(0, 1);
Thegraph.addedge(1, 2);
Thegraph.addedge(0, 3);

D
a Thegraph.addedge(0, 1);

System.out.print(“Visits: “);
Thegraph dfs();

By: S. Hassan Adelyar

Thegraph.dfs();
System.out.println();

10 June, 2010
23

Graph
class graph
{

i fi l i i 20

go
rit

hm
s private final int size = 20;

private int[] st;
private int top;

ur
es

 &
 A

l

public graph()
{

st = new int[size];

at
a

St
ru

ct st new int[size];
top = -1;

}

D
a

public void push (int j)
{

st[++top] = j;

By: S. Hassan Adelyar

}

10 June, 2010
24

Graph
public int pop()

{
[]

go
rit

hm
s return st[top--];

}

public int peek()

ur
es

 &
 A

l public int peek()
{

return st[top];
}

at
a

St
ru

ct }

public boolean isempty()
{

D
a {

return (top == -1);
}

By: S. Hassan Adelyar

}

10 June, 2010
25

Graph
class vertex
{

go
rit

hm
s {

public String city;
public boolean wasvisited;

ur
es

 &
 A

l public boolean wasvisited;

public vertex(String cty)

at
a

St
ru

ct public vertex(String cty)
{

city = cty;D
a city = cty;

wasvisited = false;
}

By: S. Hassan Adelyar

}
}

10 June, 2010
26

Graph
class graphs
{

private final int max verts = 20;

go
rit

hm
s private final int max_verts 20;

private vertex vertexlist[];
private int adjmat[][];
private int nverts;
private graph thestack;

ur
es

 &
 A

l private graph thestack;

public graphs()
{

vertexlist = new vertex[max verts];

at
a

St
ru

ct

vertexlist new vertex[max_verts];
adjmat = new int[max_verts][max_verts];
nverts = 0;
for(int j=0; j<max_verts; j++)

for(int k= 0; k<max verts; k++)

D
a for(int k 0; k max_verts; k)

adjmat[j][k] = 0;
thestack = new graph();

}

By: S. Hassan Adelyar

10 June, 2010
27

Graph
public void addvertex(String cty)

{
vertexlist[nverts++] = new vertex(cty);

go
rit

hm
s vertexlist[nverts] new vertex(cty);

}

public void addedge(int start, int end)
{

ur
es

 &
 A

l {
adjmat[start][end] = 1;
adjmat[end][start] = 1;

}

at
a

St
ru

ct public void displayvertex(int v)
{

System.out.print(vertexlist[v].city);
System.out.print("-->");

D
a System.out.print();

}

By: S. Hassan Adelyar

10 June, 2010
28

Graph
public void dfs()

{
vertexlist[0].wasvisited = true;

go
rit

hm
s vertexlist[0].wasvisited true;

System.out.println("From" + " " +vertexlist[0].city + "you can reach to the following cities: ");
thestack.push(0);

while (!thestack.isempty())

ur
es

 &
 A

l while (!thestack.isempty())
{

int v = getadjunvisitedvertex(thestack.peek());
if (v == -1)

thestack.pop();

at
a

St
ru

ct

thestack.pop();
else
{

vertexlist[v].wasvisited = true;
displayvertex(v);

D
a displayvertex(v);

thestack.push(v);
}

}
for(int j=0; j<nverts; j++)

By: S. Hassan Adelyar

for(int j 0; j nverts; j)
vertexlist[j].wasvisited = false;

}

10 June, 2010
29

Graph
public int getadjunvisitedvertex(int v)

{

go
rit

hm
s {

for(int j=0; j<nverts; j++)
if(adjmat[v][j] == 1 && vertexlist[j].wasvisited == false)

return j;

ur
es

 &
 A

l return j;
return -1;

}
}

at
a

St
ru

ct }

D
a

By: S. Hassan Adelyar

10 June, 2010
30

Graph
class dfsapp
{

public static void main (String[] args)

go
rit

hm
s p (g[] g)

{
graphs thegraph = new graphs();
thegraph.addvertex("Kabul");
thegraph.addvertex("Ghazni");

ur
es

 &
 A

l thegraph.addvertex("Jalal Abad");
thegraph.addvertex("Mazar");
thegraph.addvertex("Qundoz");

thegraph addedge(0 1);

at
a

St
ru

ct thegraph.addedge(0, 1);
thegraph.addedge(1, 2);
thegraph.addedge(0, 3);
thegraph.addedge(3, 4);

D
a

System.out.print("Visits: ");
thegraph.dfs();
System.out.println();

}

By: S. Hassan Adelyar

}

10 June, 2010
31

Graph
To use the DFS algorithm for directed graph, we need the following
modification:

thegraph addedge(0 1);

go
rit

hm
s thegraph.addedge(0, 1);

thegraph.addedge(1, 0);
thegraph.addedge(0, 4);
thegraph addedge(4 0);

ur
es

 &
 A

l thegraph.addedge(4, 0);
thegraph.addedge(1, 2);
thegraph.addedge(2, 1);
thegraph.addedge(2, 3);

at
a

St
ru

ct

g p g (,);
thegraph.addedge(3, 2);
thegraph.addedge(4, 5);
thegraph.addedge(5, 4);

D
a thegraph.addedge(4, 6);

thegraph.addedge(6, 4);

By: S. Hassan Adelyar

10 June, 2010
32

Graph
Then we need to modify the addedge method as
follow:

go
rit

hm
s

public void addedge(int start, int end)
{

ur
es

 &
 A

l adjmat[start][end] = 1;
}

at
a

St
ru

ct
D

a

By: S. Hassan Adelyar

10 June, 2010
33 Breadth-First Search (BFS)

Graph
DFS get as far away from the starting point as quickly as possible.
BFS stay as close as possible to the starting point

go
rit

hm
s BFS stay as close as possible to the starting point.

BFS visits all the vertices adjacent to the starting vertex.
Use queue instead of a stack.

ur
es

 &
 A

l Use queue instead of a stack.
An example:
A is the starting vertex, so you visit it and make it the current

at
a

St
ru

ct vertex. Then you follow these rules:
Rule 1:

Vi it th t i it d t (if th i) th t i dj tD
a Visit the next unvisited vertex (if there is one) that is adjacent

to the current vertex, mark it, and insert it into the queue.

By: S. Hassan Adelyar

10 June, 2010
34

Graph
Rule 2:
If you can’t carry out Rule 1 because there are no more unvisited

go
rit

hm
s If you can t carry out Rule 1 because there are no more unvisited

vertices, remove a vertex from the queue (if possible) and make it
the current vertex.
Rule 3:

ur
es

 &
 A

l Rule 3:
If you can’t carry out Rule 2 because the queue is empty, you are
done.
Thus you visit all the vertices adjacent to A inserting each one into

at
a

St
ru

ct Thus, you visit all the vertices adjacent to A, inserting each one into
the queue as you visit it.
There are no more unvisited vertices adjacent to A, so you remove
B from the queue and look for vertices adjacent to it

D
a B from the queue and look for vertices adjacent to it.

You find F, so you insert it in the queue. There are no more
unvisited vertices adjacent to B, so you remove C from the queue,
and so on.

By: S. Hassan Adelyar

and so on.

10 June, 2010
35

Graph
Event Queue (front to rear)
Visit A
Visit B B

go
rit

hm
s Visit B B

Visit C BC
Visit D BCD
Visit E BCDE
Remove B CDE

ur
es

 &
 A

l Remove B CDE
Visit F CDEF
Remove C DEF
Remove D EF
Visit G EFG

at
a

St
ru

ct

Visit G EFG
Remove E FG
Remove F G
Visit H GH
Remove G H

D
a Remove G H

Visit I HI
Remove H I
Remove I
Done

By: S. Hassan Adelyar

Done
At each moment, the queue contains the vertices that have been visited but whose
neighbors have not yet been fully explored. The node are visited in the order
ABCDEFGHI.

10 June, 2010
36

Graph
Note: the code is similar to DFS except for the inclusion of a queue
class instead of a stack class and BFS method instead of DFS method.

go
rit

hm
s public class graphqueue

{
private final int size = 20;

ur
es

 &
 A

l

private int[] queArray;
private int front;
private int rear;

at
a

St
ru

ct

public graphqueue()
{

D
a {

queArray = new int[size];
front = 0;
rear = -1;

By: S. Hassan Adelyar

;
}

10 June, 2010
37

Graph
public void insert(int j) {

if(rear == size - 1)

go
rit

hm
s rear = -1;

queArray[++rear] = j;
}

ur
es

 &
 A

l }
public int remove() {

int temp = queArray[front++];
if(front == size)

at
a

St
ru

ct

()
front = 0;

return temp;
}

D
a }

public boolean isempty() {
return (rear + 1 == front);

}

By: S. Hassan Adelyar

}
}

10 June, 2010
38

Graph
class vertex
{

go
rit

hm
s {

public char label;
public boolean wasvisited;

ur
es

 &
 A

l public boolean wasvisited;

public vertex(char lab)

at
a

St
ru

ct public vertex(char lab)
{

label = lab;D
a label = lab;

wasvisited = false;
}

By: S. Hassan Adelyar

}
}

10 June, 2010
39

Graph
class bfsgraph {

private final int max verts = 20;

go
rit

hm
s p _ ;

private vertex vertexlist[];
private int adjmat[][];
private int nverts;

ur
es

 &
 A

l private int nverts;
private graphqueue thequeue;
public bfsgraph() {

li []

at
a

St
ru

ct vertexlist = new vertex[max_verts];
adjmat = new int[max_verts][max_verts];
nverts = 0;

D
a ;

for(int j=0; j<max_verts; j++)
for(int k= 0; k<max_verts; k++)

adjmat[j][k] = 0;

By: S. Hassan Adelyar

adjmat[j][k] = 0;
thequeue = new graphqueue();

}

10 June, 2010
40

Graph
public void addvertex(char lab)

{

go
rit

hm
s {

vertexlist[nverts++] = new vertex(lab);
}

public void addedge(int start int end)

ur
es

 &
 A

l public void addedge(int start, int end)
{

adjmat[start][end] = 1;
dj t[d][t t] 1

at
a

St
ru

ct adjmat[end][start] = 1;
}

public void displayvertex(int v)

D
a p p y ()

{
System.out.print(vertexlist[v].label);

}

By: S. Hassan Adelyar

}

10 June, 2010
41

Graph
public void bfs() {

vertexlist[0].wasvisited = true;

go
rit

hm
s displayvertex(0);

thequeue.insert(0);
int v2;
while (!thequeue isempty()) {

ur
es

 &
 A

l while (!thequeue.isempty()) {
int v1 = thequeue.remove();
while((v2 = getadjunvisitedvertex(v1)) != -1) {

vertexlist[v2] wasvisited = true;

at
a

St
ru

ct

vertexlist[v2].wasvisited true;
displayvertex(v2);
thequeue.insert(v2);

}

D
a }

}
for(int j=0; j<nverts; j++)

vertexlist[j].wasvisited = false;

By: S. Hassan Adelyar

}

10 June, 2010
42

Graph
public int getadjunvisitedvertex(int v) {

go
rit

hm
s for(int j=0; j<nverts; j++)

if(adjmat[v][j] == 1 && vertexlist[j].wasvisited ==

ur
es

 &
 A

l (j j j
false)

return j;

at
a

St
ru

ct

j;
return -1;

}D
a }

}

By: S. Hassan Adelyar

10 June, 2010
43

Graph
class bfsapp {

public static void main(String[] args) {
bfsgraph thegraph = new bfsgraph();

go
rit

hm
s bfsgraph thegraph = new bfsgraph();

thegraph.addvertex('A');
thegraph.addvertex('B');
thegraph.addvertex('C');
th h dd t ('D')

ur
es

 &
 A

l thegraph.addvertex('D');
thegraph.addvertex('E');

thegraph.addedge(0, 1);

at
a

St
ru

ct thegraph.addedge(1, 2);
thegraph.addedge(0, 3);
thegraph.addedge(3, 4);

D
a

System.out.print("Visits: ");
thegraph.bfs();
System.out.println();

}

By: S. Hassan Adelyar

}
}

10 June, 2010
44 Minimum Spanning Trees

Graph
Remove any extra traces.

go
rit

hm
s The result would be a graph with the minimum

number of edges necessary to connect the
ti

ur
es

 &
 A

l vertices.
For example, figure (a) shows five vertices with

i b f d hil fi (b)

at
a

St
ru

ct an excessive number of edges, while figure (b)
shows the same vertices with the minimum
n mber of edges necessar to connect themD

a number of edges necessary to connect them.
This constitutes a minimum spanning tree (MST).

By: S. Hassan Adelyar

10 June, 2010
45

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

10 June, 2010
46

Graph
There are many possible MST.
Figure (b) shows edges AB BC CD and DE but edges AC

go
rit

hm
s Figure (b) shows edges AB, BC, CD, and DE, but edges AC,

CE, ED, and DB would do just as well.
E = V – 1

ur
es

 &
 A

l

We are not worried here about the length of the edges. We
are not trying to find a minimum physical length.
The algorithm for creating the minimum spanning tree can

at
a

St
ru

ct The algorithm for creating the minimum spanning tree can
be based on either the DFS or the BFS.
By executing the DFS and recording the edges you have
t l d t k th h t ti ll tD

a traveled to make the search, you automatically create a
minimum spanning tree.
The only difference between the mst() and dfs() is that mst()

By: S. Hassan Adelyar

y () () ()
must somehow record the edges traveled.

10 June, 2010
47 Java Code

Graph
public void mst() {

vertexlist[0] wasvisited = true;

go
rit

hm
s vertexlist[0].wasvisited = true;

thestack.push(0);
while (!thestack isempty()) {

ur
es

 &
 A

l while (!thestack.isempty()) {
int currentvertex = thestack.peek();
int v = getadjunvisitedvertex(currentvertex);

at
a

St
ru

ct int v getadjunvisitedvertex(currentvertex);
if(v == -1)

thestack.pop();

D
a thestack.pop();

else {
vertexlist[v].wasvisited = true;

By: S. Hassan Adelyar

[] ;
thestack.push(v);

10 June, 2010
48

Graph
displayvertex(currentvertex);
di l t ()

go
rit

hm
s displayvertex(v);

System.out.print(" ");

ur
es

 &
 A

l }
}

at
a

St
ru

ct for(int j=0; j<nverts; j++)
vertexlist[j].wasvisited = false;

D
a

}

By: S. Hassan Adelyar

10 June, 2010
49

Graph
class mststack {

private final int size = 20;
public int pop() {

[]

go
rit

hm
s private final int size = 20;

private int[] st;
private int top;

return st[top--];
}
public int peek() {

ur
es

 &
 A

l private int top;
public mststack() {

st = new int[size];

public int peek() {
return st[top];

}

at
a

St
ru

ct top = -1;
}

bli id h (i t j) {

}
public boolean isempty() {

return (top == -1);

D
a public void push (int j) {

st[++top] = j;
}

}
}

By: S. Hassan Adelyar

}

10 June, 2010
50

Graph
class vertex
{

go
rit

hm
s {

public char label;
public boolean wasvisited;

ur
es

 &
 A

l public boolean wasvisited;

public vertex(char lab)

at
a

St
ru

ct public vertex(char lab)
{

label = lab;D
a label = lab;

wasvisited = false;
}

By: S. Hassan Adelyar

}
}

10 June, 2010
51

Graph
class mstgraph {

private final int max verts = 20;

go
rit

hm
s p _ ;

private vertex vertexlist[];
private int adjmat[][];
private int nverts;

ur
es

 &
 A

l private int nverts;
private mststack thestack;
public mstgraph() {

li []

at
a

St
ru

ct vertexlist = new vertex[max_verts];
adjmat = new int[max_verts][max_verts];
nverts = 0;

D
a ;

for(int j=0; j<max_verts; j++)
for(int k= 0; k<max_verts; k++)

adjmat[j][k] = 0;

By: S. Hassan Adelyar

adjmat[j][k] = 0;
thestack = new mststack();

}

10 June, 2010
52

Graph
public void addvertex(char lab)

{

go
rit

hm
s {

vertexlist[nverts++] = new vertex(lab);
}

public void addedge(int start int end)

ur
es

 &
 A

l public void addedge(int start, int end)
{

adjmat[start][end] = 1;
dj t[d][t t] 1

at
a

St
ru

ct adjmat[end][start] = 1;
}

public void displayvertex(int v)

D
a p p y ()

{
System.out.print(vertexlist[v].label);

}

By: S. Hassan Adelyar

}

10 June, 2010
53

Graph
public void mst() {

vertexlist[0].wasvisited = true;
thestack.push(0);

go
rit

hm
s thestack.push(0);

while (!thestack.isempty()) {
int currentvertex = thestack.peek();
int v = getadjunvisitedvertex(currentvertex);
if(v == -1)

ur
es

 &
 A

l if(v 1)
thestack.pop();

else {
vertexlist[v].wasvisited = true;
thestack.push(v);

at
a

St
ru

ct

thestack.push(v);

displayvertex(currentvertex);
displayvertex(v);
System.out.print(" ");

D
a System.out.print();

}
}
for(int j=0; j<nverts; j++)

vertexlist[j].wasvisited = false;

By: S. Hassan Adelyar

vertexlist[j].wasvisited false;
}

10 June, 2010
54

Graph
public int getadjunvisitedvertex(int v)

{

go
rit

hm
s {

for(int j=0; j<nverts; j++)

ur
es

 &
 A

l if(adjmat[v][j] == 1 && vertexlist[j].wasvisited ==
false)

t j

at
a

St
ru

ct return j;
return -1;

D
a }

}

By: S. Hassan Adelyar

10 June, 2010
55

Graph
class mstapp {

public static void main (String[] args) {
mstgraph thegraph = new mstgraph();

go
rit

hm
s g p g p g p ();

thegraph.addvertex('A');
thegraph.addvertex('B');
thegraph.addvertex('C');
thegraph.addvertex('D');

ur
es

 &
 A

l thegraph.addvertex('E');
thegraph.addedge(0, 1);
thegraph.addedge(0, 2);
thegraph.addedge(0, 3);
thegraph addedge(0 4);

at
a

St
ru

ct thegraph.addedge(0, 4);
thegraph.addedge(1, 2);
thegraph.addedge(1, 3);
thegraph.addedge(1, 4);
thegraph.addedge(2, 3);

D
a thegraph.addedge(2, 3);

thegraph.addedge(2, 4);
thegraph.addedge(3, 4);
System.out.print("Minimum Spanning Tree: ");
thegraph.mst();

By: S. Hassan Adelyar

System.out.println();
}

}

10 June, 2010
56 Directed Graph

Graph
The graph needs a feature: The
edge need to have a direction

go
rit

hm
s edge need to have a direction.

When this is the case, the graph is
called a directed graph. In a

ur
es

 &
 A

l called a directed graph. In a
directed graph you can proceed
only one way along an edge. The

at
a

St
ru

ct arrows in the figure show the
direction of the edges.

D
a

By: S. Hassan Adelyar

10 June, 2010
57

Graph
In a program, the difference between a non-directed graph and a directed
graph is that an edge in a directed graph has only one entry in the
dj t i Th f ll i fi h th dj t i f th

go
rit

hm
s adjacency matrix. The following figure shows the adjacency matrix for the

above figure:
A B C

A 0 1 0

ur
es

 &
 A

l A 0 1 0
B 0 0 1
C 0 0 0
E h d i t d b i l 1 Th l b l h h th

at
a

St
ru

ct Each edge is represented by a single 1. The row labels show where the
edge starts, and the column labels show where it ends. Thus, the edge
from A to B is represented by a single 1 at row A column B.
For a non-directed graph half of the adjacency matrix mirrors the

D
a For a non-directed graph half of the adjacency matrix mirrors the

other half, so half the cells are redundant. However, for a weighted
graph, every cell in the adjacency matrix conveys unique information.

By: S. Hassan Adelyar

10 June, 2010
58

Graph
For a directed graph, the method that adds an edge thus needs only a
single statement:
bli id dd d (i t t t i t d) // di t d h

go
rit

hm
s public void addedge(int start, int end) // directed graph

{
adjmat[start][end] = 1;

}

ur
es

 &
 A

l }
Connectivity in Directed Graphs
We have seen how in a non-directed graph you can find all the
vertices that are connected by doing a depth-first or breadth-first

at
a

St
ru

ct vertices that are connected by doing a depth-first or breadth-first
search. When we try to find all the connected vertices in a directed
graph, things get more complicated. You can’t just start from a
randomly selected vertex and expect to reach all the other connected
vertices Consider the following graph:D

a vertices. Consider the following graph:
If you start on A, you can get to C but not to any of the other vertices. If
you start on B, you can’t get to D, and if you start on C, you can’t get
anywhere. The meaningful question about connectivity is: What

By: S. Hassan Adelyar

y g q y
vertices can you reach if you start on a particular vertex?

10 June, 2010
59 Warshall’s Algorithm

Graph
In some application it is important to find out quickly whether one
vertex is reachable from another vertex.

go
rit

hm
s You could examine the connectivity table, but then you would need

to look through all the entries on a given row, which would take
O(N) time. But you are in a hurry; is there a faster way?

ur
es

 &
 A

l It is possible to construct a table that will tell you instantly (that is,
O(1) time) whether one vertex is reachable from another. Such a
table can be obtained by systematically modifying a graph’s
adjacency matrix The graph represented by this revised

at
a

St
ru

ct adjacency matrix. The graph represented by this revised
adjacency matrix is called the transitive closure of the original
graph.
In an ordinary adjacency matrix the row number indicates whereD

a In an ordinary adjacency matrix the row number indicates where
an edge starts and the column number indicates where it ends. A 1
at the intersection of row C and column D means there is an edge
from vertex C to vertex D. You can get from one vertex to the other

By: S. Hassan Adelyar

from vertex C to vertex D. You can get from one vertex to the other
in one step.

10 June, 2010
60

Graph
A B C D E

A 0 0 1 0 0

go
rit

hm
s A 0 0 1 0 0

B 1 0 0 0 1
C 0 0 0 0 0

ur
es

 &
 A

l C 0 0 0 0 0
D 0 0 0 0 1
E 0 0 1 0 0

at
a

St
ru

ct
D

a

By: S. Hassan Adelyar

10 June, 2010
61

Graph
We can use Warshall’s algorithm to change the adjacency matrix into the
transitive closure of the graph. This algorithm does a lot in a few lines of code. It
is based on a simple idea:

go
rit

hm
s p

If you can get from vertex L to vertex M, and you can get from M to N, then you
can get from L to N.
We have derived a two-step path from two one-step paths. The adjacency
matrix shows all possible one-step paths, so it is a good starting place to apply

ur
es

 &
 A

l at s o s a poss b e o e step pa s, so s a good sta t g p ace o app y
this rule.
Row A
We start with row A. There is nothing in columns A and B, but there is a 1 at
column C, so we stop there. Now the 1 at this location says there is a path from

at
a

St
ru

ct

column C, so we stop there. Now the 1 at this location says there is a path from
A to C. If we knew there was a path from some vertex X to A, then we would know
there was a path from X to C. Where are the edges (if any) that end at A? They are
in column A. So we examine all the cells in column A. In the above table there is
only one 1 in column A: at row B. It says there is an edge from B to A. So we
k th i d f B t A d th (th t t d ith) f A tD

a know there is an edge from B to A, and another (the one we started with) from A to
C. From this we infer that we can get from B to C in two steps. You can verify this is
true by looking at the graph.
To record this result, we put a 1 at the intersection of row B and column C. The
result is shown in the following table:

By: S. Hassan Adelyar

result is shown in the following table:
The remaining cells of row A are blank.

10 June, 2010
62

Graph
Rows B, C, and D
We go to row B. The first cell, at column A has a 1, indicating an

go
rit

hm
s g , , g

edge from B to A. Are there any edges that end at B? We look in
column B, but it is empty, so we know that none of the 1s we find in
row B will result in finding longer paths because no edges end at B.

ur
es

 &
 A

l Row C has no 1s at all, so we go to row D. Here we find an edge from
D to E. However, column D is empty, so there are no edges that end
on D.

at
a

St
ru

ct Row E
In row E we see there is an edge from E to C. Looking in column E
we see the first entry is for the edge B to E, so with B to E and E to C

i f th i th f B t C H it i l d bD
a we infer there is a path from B to C. However, it is already been

discussed, as indicated by the 1 at that location.
There is another 1 in column E, at row D. This edge from D to E
l th f E t C i l th f D t C i t 1

By: S. Hassan Adelyar

plus the one from E to C imply a path from D to C, so we insert a 1
in that cell.
Warshall’s algorithm is now complete.

10 June, 2010
63 Implementation of Warshall Algorithm

Graph
One way to implement Warshall algorithm is with 3
nested loops The outer loop looks at each row; let’s

go
rit

hm
s nested loops. The outer loop looks at each row; let s

call its variable y. The loop inside that looks at each
cell in the row; it use variable x. If a 1 is found in cell
(x y) there is an edge from y to x and the third

ur
es

 &
 A

l (x,y), there is an edge from y to x, and the third
(innermost) loop is activated; it use variable z. The
third loop examines the cells in column y, looking for

at
a

St
ru

ct

p y g
an edge that ends at y. (Note that y is used for rows in
the first loop but for the column in the third loop). If there
is a 1 in column y at row z then there is an edge from

D
a is a 1 in column y at row z, then there is an edge from

z to y. with one edge from z to y and another from y to
x it follows that there is a path from z to x, so you can

t 1 t ()
By: S. Hassan Adelyar

put a 1 at (x,z).

10 June, 2010
64 Weighted Graphs

Graph
If vertices in a weighted graph represent cities,
th i ht f th d i ht t di t

go
rit

hm
s the weight of the edges might represent distance

between the cities, or costs to fly between them.
When we include weight as a feature of a graph’s

ur
es

 &
 A

l When we include weight as a feature of a graph s
edges, some interesting and complex questions
arise What is the minimum spanning tree for a

at
a

St
ru

ct arise. What is the minimum spanning tree for a
weighted graph?
What is the shortest (or cheapest) distance fromD

a What is the shortest (or cheapest) distance from
one vertex to another?
Such questions have important applications in

By: S. Hassan Adelyar

Such questions have important applications in
the real world.

10 June, 2010
65 Minimum Spanning Tree with Weighted Graphs

Graph
To introduce weighted graphs, we will return to the

ti f th i i i t

go
rit

hm
s question of the minimum spanning tree.

Creating such a tree is a bit more complicated
with a weighted graph than with an unweighted

ur
es

 &
 A

l with a weighted graph than with an unweighted
one. When all edges are the same weight, it is
fairly straightforward for the algorithm to choose

at
a

St
ru

ct fairly straightforward for the algorithm to choose
one to add to the minimum spanning tree. But
when edges can have different weights, some

D
a when edges can have different weights, some

arithmetic is needed to choose the right one.

By: S. Hassan Adelyar

10 June, 2010
66 Creating the Algorithm

Graph
The key activity in carrying out the algorithm is to maintain a
list of the costs of links between pairs of nodes. A list in which

t dl l t th i i l t i it

go
rit

hm
s we repeatedly select the minimum value suggests a priority

queue as an appropriate data structure. In a serious
program this priority queue might be based on a heap and this
would speed up operations on large priority queues However

ur
es

 &
 A

l would speed up operations on large priority queues. However,
in our example we will use a simple array.
Outline of the Algorithm
Start with a vertex and put it in the tree Then repeatedly do

at
a

St
ru

ct Start with a vertex, and put it in the tree. Then repeatedly do
the following:
Find all the edges from the newest vertex to other vertices
that are not in the tree Put these edges in the priority queueD

a that are not in the tree. Put these edges in the priority queue.
Pick the edge with the lowest weight, and add this edge and
its destination vertex to the tree.
Repeat these steps until all the vertices are in the tree At that

By: S. Hassan Adelyar

Repeat these steps until all the vertices are in the tree. At that
point you are done.

10 June, 2010
67

Graph
In a programming algorithm we make sure that

d t h d i th i it

go
rit

hm
s we do not have any edges in the priority queue

that lead to vertices that are already in the tree.
We could go through the queue looking for and

ur
es

 &
 A

l We could go through the queue looking for and
removing any such edges each time we added
a new vertex to the tree As it turns out it is

at
a

St
ru

ct a new vertex to the tree. As it turns out, it is
easier to keep only one edge from the tree to a
given vertex in the priority queue at any given

D
a given vertex in the priority queue at any given

time.

By: S. Hassan Adelyar

10 June, 2010
68

Graph
Java code:

go
rit

hm
s The following method creates the minimum

spanning tree for a weighted graph, follows
th l ith tli d li A i th

ur
es

 &
 A

l the algorithm outlined earlier. As in our other
graph programs, it assumes there is a list of
vertices in vertexlist[] and that it will start with

at
a

St
ru

ct vertices in vertexlist[], and that it will start with
the vertex at index 0. the currentvertex
variable represents the vertex most recentlyD

a variable represents the vertex most recently
added to the tree.

By: S. Hassan Adelyar

10 June, 2010
69

Graph
public void mstw() {

currentvertex = 0;

go
rit

hm
s while(ntree < nverts – 1) {

vertexlist[currentvertex] .isintree = true;
ntree++;
// insert edges adjacent to currentvertex into PQ

ur
es

 &
 A

l // insert edges adjacent to currentvertex into PQ
for(int j = 0; j<nverts; j++)
{

if(j == currentvertex)

at
a

St
ru

ct

if(j currentvertex)
continue;

if(vertexlist[j].isintree)
continue;

D
a ;

int distance = adjmat[currentvertex][j];
if(distance == infinity)

continue;

By: S. Hassan Adelyar

putinpq(j, distance);
}

10 June, 2010
70

Graph
if(thepq.size() == 0)

{

go
rit

hm
s System.out.println(“Graph not connected”);

return;
}
// remove edge with minimum distance from pq

ur
es

 &
 A

l // remove edge with minimum distance, from pq
edge theedge = thepq.removemin();
int sourcevert = the edge.srcvert;
currentvert = theedge destvert;

at
a

St
ru

ct

currentvert theedge.destvert;
// display edge from source to current
System.out.print(vertexlist[sourcevert].abel);
System.out.print(vertexlist[currentvertex].label);

D
a y p ([]);

System.out.print(“ “);
}

By: S. Hassan Adelyar

for(int j=0; j<nverts; j++)
vertexlist[j].isintree = false;

}

10 June, 2010
71

Graph
The algorithm is carried out in the while loop,

hi h t i t h ll ti i th t

go
rit

hm
s which terminate when all vertices are in the tree.

Within this loop the following activities take place:

ur
es

 &
 A

l The current vertex is placed in the tree.
The edges adjacent to this vertex are placed in

at
a

St
ru

ct the priority queue.
Edge with the minimum weight is removed from

D
a g g

the priority queue. The destination vertex of this
edge becomes the current vertex.

By: S. Hassan Adelyar

The following is the code for putinpq() method:

10 June, 2010
72

Graph
public void putinpq(int newvert, int newdist) {

int queueindex = thepq.find(newvert);
if(queueindex != 1) {

go
rit

hm
s if(queueindex != -1) {

edge tempedge = thepq.peekn(queueindex);
int olddist = tempedge.distance;
if(olddist > newdist)

ur
es

 &
 A

l

{
thepq.removen(queueindex);
edge theedge = new edge(currentvertex, newvert, newdist);
thepq insert(theedge);

at
a

St
ru

ct thepq.insert(theedge);
}

}
else

D
a {

edge theedge = new edge(currentvertex, newvert, newdist);
thepq.insert(theedge);

}

By: S. Hassan Adelyar

}
}

10 June, 2010
73

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

10 June, 2010
74

Graph
class edge
{

go
rit

hm
s {

public int srcvert;
public int destvert;
public int distance;

ur
es

 &
 A

l public int distance;

public edge(int sv, int dv, int d)

at
a

St
ru

ct

p g ()
{

srcvert = sv;
destvert = dv;D

a destvert = dv;
distance = d;

}

By: S. Hassan Adelyar

}

10 June, 2010
75

Graph
class graph {

private final int max_verts = 20;
private final int infinity = 10000;

go
rit

hm
s private final int infinity = 10000;

private vertex vertexlist[];
private int adjmat[][];
private int nverts;

ur
es

 &
 A

l

private int currentvert;
private priorityq thepq;
private int ntree;
public graph() {

at
a

St
ru

ct public graph() {
vertexlist = new vertex[max_verts];
adjmat = new int[max_verts][max_verts];
nverts = 0;

D
a for(int j=0; j<max_verts; j++)

for(int k=0; k<max_verts; k++)
adjmat[j][k] = infinity;

thepq = new priorityq();

By: S. Hassan Adelyar

thepq new priorityq();
}

10 June, 2010
76

Graph
public void addvertex(char lab)
{

go
rit

hm
s vertexlist[nverts++] = new vertex(lab);

}

ur
es

 &
 A

l public void addedge(int start, int end, int weight)
{

adjmat[start][end] = weight;
dj t[d][t t] i ht

at
a

St
ru

ct adjmat[end][start] = weight;
}

bli id di l t (i t)D
a public void displayvertex(int v)

{
System.out.print(vertexlist[v].label);

}

By: S. Hassan Adelyar

}

10 June, 2010
77

Graph
public void mstw()
{

go
rit

hm
s currentvert = 0;

while(ntree < nverts-1)
{

vertexlist[currentvert] isintree true;

ur
es

 &
 A

l vertexlist[currentvert].isintree = true;
ntree++;
for(int j=0; j< nverts; j++)
{

at
a

St
ru

ct

{
if(j==currentvert)

continue;
if(vertexlist[j].isintree)

D
a ([j])

continue;
int distance = adjmat[currentvert][j];
if(distance == infinity)

By: S. Hassan Adelyar

continue;
putinpq(j, distance);

}

10 June, 2010
78

Graph
if(thepq.size2() == 0)

{

go
rit

hm
s System.out.println("Graph Not Connected");

return;
}

ur
es

 &
 A

l

edge theedge = thepq.removemin();
int sourcevert = theedge.srcvert;
currentvert = theedge destvert;

at
a

St
ru

ct

currentvert theedge.destvert;

System.out.print(vertexlist[sourcevert].label);
System.out.print(vertexlist[currentvert].label);

D
a y p ([]);

System.out.print(" ");
}

By: S. Hassan Adelyar

for(int j=0; j<nverts; j++)
vertexlist[j].isintree = false;

}

10 June, 2010
79

Graph
public void putinpq(int newvert, int newdist) {

int queindex = thepq.find(newvert);
if(queindex != 1)

go
rit

hm
s if(queindex != -1)

{
edge tempedge = thepq.peekn(queindex);
int olddist = tempedge.distance;

ur
es

 &
 A

l

if(olddist > newdist)
{

thepq.removen(queindex);
edge theedge = new edge(currentvert newvert newdist);

at
a

St
ru

ct edge theedge = new edge(currentvert, newvert, newdist);
thepq.insert(theedge);

}
}

D
a else

{
edge theedge = new edge(currentvert, newvert, newdist);
thepq.insert(theedge);

By: S. Hassan Adelyar

thepq.insert(theedge);
}

}
}

10 June, 2010
80

Graph
class vertex
{

go
rit

hm
s {

public char label;
public boolean isintree;

ur
es

 &
 A

l p ;

public vertex(char lab)

at
a

St
ru

ct {
label = lab;
i i t f lD

a isintree = false;
}

By: S. Hassan Adelyar
}

10 June, 2010
81

Graph
class priorityq {

private final int size = 20;
private edge[] quearray;

go
rit

hm
s private edge[] quearray;

private int size2;
public priorityq() {

quearray = new edge[size];

ur
es

 &
 A

l

size2 = 0;
}
public void insert(edge item) {

int j;

at
a

St
ru

ct int j;
for(j=0; j<size2; j++)

if(item.distance >= quearray[j].distance)
break;

D
a for(int k=size2-1; k>=j; k--)

quearray[k+1] = quearray[k];
quearray[j] = item;
size2++;

By: S. Hassan Adelyar

size2 ;
}

10 June, 2010
82

Graph
public edge removemin() {

return quearray[--size2];
}

go
rit

hm
s }

public void removen(int n) {
for(int j=n; j<size2-1; j++)

quearray[j] = quearray[j+1];

ur
es

 &
 A

l quearray[j] = quearray[j+1];
size2--;

}
public edge peekmin() {

at
a

St
ru

ct public edge peekmin() {
return quearray[size2-1];

}
public int size2() {

D
a p () {

return size2;
}

By: S. Hassan Adelyar

10 June, 2010
83

Graph
public boolean isempty()

{
(i 2 0)

go
rit

hm
s return (size2 == 0);

}
public edge peekn(int n)
{

ur
es

 &
 A

l {
return quearray[n];

}
public int find(int finddex)

at
a

St
ru

ct public int find(int finddex)
{

for (int j=0; j<size2; j++)
if(quearray[j].destvert == finddex)

D
a (q y[j])

return j;
return -1;

}

By: S. Hassan Adelyar

}

10 June, 2010
84

Graph
class mstwapp {

public static void main(String[] args) {
graph thegraph = new graph();

go
rit

hm
s thegraph.addvertex('A');

thegraph.addvertex('B');
thegraph.addvertex('C');
thegraph.addvertex('D');
thegraph addvertex('E');

ur
es

 &
 A

l thegraph.addvertex(E);
thegraph.addvertex('F');
thegraph.addedge(0,1,6);
thegraph.addedge(0,3,4);
thegraph.addedge(1,2,10);
th h dd d (1 3 7)

at
a

St
ru

ct thegraph.addedge(1,3,7);
thegraph.addedge(1,4,7);
thegraph.addedge(2,3,8);
thegraph.addedge(2,4,5);
thegraph.addedge(2,5,6);

D
a g p g (, ,);

thegraph.addedge(3,4,12);
thegraph.addedge(4,5,7);
System.out.print("Minimum Spanning Tree: ");
thegraph.mstw();
System out println();

By: S. Hassan Adelyar

System.out.println();
}

}

10 June, 2010
85

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

10 June, 2010
86

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

10 June, 2010
87 The Shortest-Path Problem

Graph
The most commonly encountered problem associated
with weighted graphs is that of finding the shortest path
b i i Thi l i hi bl i

go
rit

hm
s between two given vertices. This solution to this problem is

applicable to a wide variety of real-world situations. It is
more complex problem than we have seen before.

ur
es

 &
 A

l The shortest-path problem is this: for a given starting
point and destination, what is the cheapest route?
Dijkstra’s Algorithm

at
a

St
ru

ct

j g
The solution for the shortest-path problem is called
Dijkstar’s algorithm after Edsger Dijkstra, who first
described it in 1959. This algorithm is based on the

D
a g

adjacency matrix representation of a graph. This algorithm
finds not only the shortest path from one specified vertex to
another, but also the shortest paths from the specified

t t ll th th ti
By: S. Hassan Adelyar

vertex to all the other vertices.

10 June, 2010
88

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

10 June, 2010
89 Java code

Graph
The code for the shortest-path algorithm may be the most complex.
The key data structure in the shortest-path algorithm is an array that
keeps track of the minimum distances from the starting vertex to the

go
rit

hm
s keeps track of the minimum distances from the starting vertex to the

other vertices (destination vertices). During the execution of the
algorithm, these distances are changed, until at the end they hold the
actual shortest distances from the start. In the example code, this
array is called spath[]

ur
es

 &
 A

l array is called spath[].
It is important to record not only the minimum distance from the
starting vertex to each destination vertex, but also the path taken.
Fortunately, the entire path need not be explicitly stored. It is only

at
a

St
ru

ct

y, p p y y
necessary to store the parent of the destination vertex. The parent is
the vertex reached just before the destination. There are several
ways to keep track of the parent vertex, but we choose to combine the
parent with the distance and put the resulting object into the spath[]

D
a parent with the distance and put the resulting object into the spath[]

array. We call this class of objects Distpar (for distance parent).

By: S. Hassan Adelyar

10 June, 2010
90

Graph
class distpar
{

go
rit

hm
s {

public int distance;
bli i t t t

ur
es

 &
 A

l public int parentvert;
public distpar (int pv, int d)
{

at
a

St
ru

ct {
distance = d;

D
a parentvert = pv;

}

By: S. Hassan Adelyar

}

10 June, 2010
91

Graph
The path() method:

go
rit

hm
s The path() method carries out the actual

shortest-path algorithm. It uses the distpar
l d th t l hi h i th

ur
es

 &
 A

l class and the vertex class, which we saw in the
mstw. The path() method is a member of the
graph class

at
a

St
ru

ct graph class.

D
a

By: S. Hassan Adelyar

10 June, 2010
92

Graph
public void path() {

int starttree =0;

go
rit

hm
s vertexlist[starttree].isintree = true;

ntree = 1;
for(int j=0; j<nverts; j++)

ur
es

 &
 A

l (j j j)
{

int tempdist = adjmat[starttree][j];
spath[j] = new distpar(starttree, tempdist);

at
a

St
ru

ct

p [j] p (, p);
}
while(ntree < nverts)
{

D
a {

int indexmin = getmin();
int mindist = spath[indexmin].distance;

By: S. Hassan Adelyar

10 June, 2010
93

Graph
if(mindist == infinity) {

System.out.println("There are unreachable vertices");
break;

go
rit

hm
s break;

}
else
{

ur
es

 &
 A

l

currentvert = indexmin;
starttocurrent = spath[indexmin].distance;

}
vertexlist[currentvert] isintree =true;

at
a

St
ru

ct vertexlist[currentvert].isintree =true;
ntree++;
adjust_spath();

}

D
a displaypaths();

ntree =0;
for(int j=0; j<nverts; j++)

By: S. Hassan Adelyar

for(int j 0; j nverts; j)
vertexlist[j].isintree = false;

}

10 June, 2010
94

Graph
The starting vertex is always at index 0 of the vertexlist[]
array. The first task in path() is to put this vertex into the

go
rit

hm
s y p () p

tree. As the algorithm proceeds, we will be moving other
vertices into the tree as well. The vertex object contain a flag
that indicates whether a vertex object is in the tree. Putting a

ur
es

 &
 A

l j g
vertex in the tree consists of setting this flag and incrementing
ntree, which counts how many vertices are in the tree.
Second path() copies the distance from the appropriate row

at
a

St
ru

ct Second, path() copies the distance from the appropriate row
of the adjacency matrix to spath[]. This is always row 0,
because for simplicity we assume 0 is the index of the
starting vertex Initially the parent field of all the spath[]

D
a starting vertex. Initially, the parent field of all the spath[]

entries is A, the starting vertex.
The while loop of the algorithm terminates after all the
vertices have been placed in the tree

By: S. Hassan Adelyar

vertices have been placed in the tree.

10 June, 2010
95

Graph
There are basically 3 actions in this loop:
Choose the spath[] entry with the minimum distance.

go
rit

hm
s p [] y

Put the corresponding vertex in the tree. This becomes the
“current vertex” currentvert.
Update all the spath [] entries to reflect distances from

ur
es

 &
 A

l Update all the spath [] entries to reflect distances from
currentvert.
If path() finds that the minimum distance is infinity, it knows
that some vertices are unreachable from the starting point.

at
a

St
ru

ct

g p
Why? Because not all the vertices are in the tree (the while
loop has not terminated), and yet there is no way to get to
these extra vertices; if there were, there would be a non-
i fi it di tD

a infinite distance.
To find the spath[] entry with the minimum distance, path()
calls the getmin() method. This straightforward; it steps

th th[] t i d t ith th l b

By: S. Hassan Adelyar

across the spath[] entries and return with the column number
of the entry with the minimum distance.

10 June, 2010
96

Graph
Updating spath[] with adjust_spath():
The adjust_spath() method is used to update the spath[] entries to reflect
new information obtained from the vertex just inserted in the tree When

go
rit

hm
s new information obtained from the vertex just inserted in the tree. When

this routine is called, currentvert has just been placed in the tree, and
starttocurrent is the current entry in spath [] for this vertex. The
adjust_spath() method now examine each vertex entry in spath[], using
the loop counter column to point to each vertex in turn

ur
es

 &
 A

l the loop counter column to point to each vertex in turn.
For each spath[] entry, provided the vertex is not in the tree, it does three
things:
It adds the distance to the current (already calculated and now in

at
a

St
ru

ct

(y
starttocurrent) to the edge distance from currentvert to the column vertex.
we call the result starttofringe.
It compares starttofringe with the current entry in spath [].
If starttofringe is less it replaces the entry in spath []D

a If starttofringe is less, it replaces the entry in spath [].
This is the heart of Dijkstra’s algorithm. It keeps spath [] updated with
the shortest distances to all the vertices that are currently known.

By: S. Hassan Adelyar

10 June, 2010
97 Java program for Dijkstra’s Algorithm:

Graph
class distpar
{

go
rit

hm
s {

public int distance;
public int parentvert;

ur
es

 &
 A

l public int parentvert;

public distpar(int pv, int d)

at
a

St
ru

ct

public distpar(int pv, int d)
{

distance = d;

D
a

parentvert = pv;
}

By: S. Hassan Adelyar

}

10 June, 2010
98

Graph
class vertex2
{

go
rit

hm
s {

public char label;
public boolean isintree;

ur
es

 &
 A

l

public vertex2(char lab)
{

at
a

St
ru

ct

{
label = lab;
isintree = false;

D
a }

}

By: S. Hassan Adelyar

}

10 June, 2010
99

Graph
class graph2
{

go
rit

hm
s {

private final int max_verts = 20;
private final int infinity = 10000;
private vertex2 vertexlist[];

ur
es

 &
 A

l private vertex2 vertexlist[];
private int adjmat[][];
private int nverts;
private int ntree;

at
a

St
ru

ct private int ntree;
private distpar spath[];
private int currentvert;

D
a private int starttocurrent;

By: S. Hassan Adelyar

10 June, 2010
100

Graph
public graph2() {

vertexlist = new vertex2[max_verts];
adjmat = new int[max verts][max verts];

go
rit

hm
s adjmat = new int[max_verts][max_verts];

nverts = 0;
ntree = 0;
for(int j=0; j<max_verts; j++)

ur
es

 &
 A

l

for(int k=0; k<max_verts; k++)
adjmat[j][k] = infinity;

spath = new distpar[max_verts];
}

at
a

St
ru

ct }
public void addvertex(char lab)
{

vertexlist[nverts++] = new vertex2(lab);

D
a }

public void addedge(int start, int end, int weight)
{

adjmat[start][end] = weight;

By: S. Hassan Adelyar

adjmat[start][end] weight;
}

10 June, 2010
101

Graph
public void path() {

int starttree =0;
vertexlist[starttree].isintree = true; Else {

go
rit

hm
s vertexlist[starttree].isintree true;

ntree = 1;
for(int j=0; j<nverts; j++)
{

int tempdist = adjmat[starttree][j];

currentvert = indexmin;
starttocurrent =

spath[indexmin].distance;
}

ur
es

 &
 A

l int tempdist adjmat[starttree][j];
spath[j] = new distpar(starttree, tempdist);

}
while(ntree < nverts) {

int indexmin = getmin();

}
vertexlist[currentvert].isintree =true;

ntree++;
adjust_spath();

}

at
a

St
ru

ct

int indexmin getmin();
int mindist = spath[indexmin].distance;
if(mindist == infinity)
{

System.out.println("There are unreachable

}
displaypaths();
ntree =0;
for(int j=0; j<nverts; j++)

D
a System.out.println(There are unreachable

vertices");
break;

}

(j ; j ; j)
vertexlist[j].isintree = false;

}

By: S. Hassan Adelyar

10 June, 2010
102

Graph
public int getmin()

{

go
rit

hm
s {

int mindist = infinity;
int indexmin = 0;
for(int j=1; j<nverts; j++)

ur
es

 &
 A

l for(int j=1; j<nverts; j++)
{

if(!vertexlist[j].isintree && spath[j].distance < mindist)
{

at
a

St
ru

ct {
mindist = spath[j].distance;
indexmin = j;

D
a j;

}
}
return indexmin;

By: S. Hassan Adelyar

return indexmin;
}

10 June, 2010
103

Graph
public void adjust_spath() {

int column = 1;
while(column < nverts) {

go
rit

hm
s while(column < nverts) {

if(vertexlist[column].isintree)
{

column++;

ur
es

 &
 A

l

continue;
}
int currenttofringe = adjmat[currentvert][column];
int starttofringe = starttocurrent + currenttofringe;

at
a

St
ru

ct int starttofringe = starttocurrent + currenttofringe;
int spathdist = spath[column].distance;
if(starttofringe < spathdist)
{

D
a spath[column].parentvert = currentvert;

spath[column].distance = starttofringe;
}
column++;

By: S. Hassan Adelyar

column ;
}

}

10 June, 2010
104

Graph
public void displaypaths()

{

go
rit

hm
s {

for(int j=0; j<nverts; j++)
{

System out print(vertexlist[j] label + "=");

ur
es

 &
 A

l System.out.print(vertexlist[j].label +);
if(spath[j].distance == infinity)

System.out.print("inf");
else

at
a

St
ru

ct else
System.out.print(spath[j].distance);

char parent = vertexlist[spath[j].parentvert].label;
S (())D

a System.out.print("(" + parent + ") ");
}
System.out.println(" ");

By: S. Hassan Adelyar

}
}

10 June, 2010
105

Graph
class pathapp {

public static void main (String[] args) {
graph2 thegraph = new graph2();

go
rit

hm
s g p g p g p ();

thegraph.addvertex('A');
thegraph.addvertex('C');
thegraph.addvertex('B');
thegraph.addvertex('D');

ur
es

 &
 A

l thegraph.addvertex('E');
thegraph.addedge(0,1,50);
thegraph.addedge(0,3,80);
thegraph.addedge(1,2,60);
thegraph addedge(1 3 90);

at
a

St
ru

ct thegraph.addedge(1,3,90);
thegraph.addedge(2,4,40);
thegraph.addedge(3,2,20);
thegraph.addedge(3,4,70);
thegraph.addedge(4,1,50);

D
a thegraph.addedge(4,1,50);

System.out.println("Shotest paths");
thegraph.path();
System.out.println();

}

By: S. Hassan Adelyar

}

10 June, 2010
106

Graph

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

