Graph

Graph

- One of the most versatile structures. Dictated by a physical or abstract problem. Example of such problem can be:
- Nodes in a graph may represent cities, while edges may represent airline flight routes between the cities.
- Individual tasks necessary to complete a project. In the graph, nodes may represent tasks, while directed edges indicate which task must be completed before another.
- Internet routes.

Graph Terminology

Graph

- Adjacency:
- Two vertices are said to be adjacent to one another if they are connected by a single edge.
- Paths:
- A path is a sequence of edges.
- Connected graphs:
\square A graph is said to be connected if there is at least one path from every vertex to every other vertex.
Directed and weighted graphs:

Representing a graph in a program

Graph

- Vertices:
- It is usually convenient to represent a vertex by an object of a vertex class.
class vertex
\{
public char label;
public Boolean wasvisited; public vertex(char lab) \{
label = lab;
wasvisited = false;
\}

Graph

- vertex object can be placed in an array and referred to using their index number. The vertices might also be placed in a list or some other data structure.

Graph

- Edges:

- In a binary tree, each node has a maximum of two children, but in a graph each vertex may be connected to an arbitrary number of other vertices.
- To model this sort of free-form organization, two methods are commonly used for graphs:
- Adjacency Matrix
- Adjacency List
- The Adjacency Matrix:
- An adjacency matrix is a two-dimensional array in which the elements indicate whether an edge is present between two vertices. If a graph has \mathbf{N} vertices, the adjacency matrix is an NxN array. See the following example:

Graph

By: S. Hassan Adelyar

Graph

- The adjacency list:

- The list in adjacency list refers to a linked list.
- Each individual list shows what vertices a given vertex is adjacent to. Following is the adjacency list for the above graph:
- Vertex
- A
- B
- C

D

List Containing Adjacent Vertex
$B \rightarrow C \rightarrow D$
$A \rightarrow D$
A
$A \rightarrow B$

Adding Vertices and Edges to a Graph

Graph

- To add a vertex to a graph, you make anew vertex object and Insert it into your vertex array, vertexList.
- The creation of a vertex looks something like this:
- vertexList[nVerts++] = new vertex('F');
- To insert the edge, you say:
- adjMat[1][3] = 1;
- adjMat[3][1] = 1;

The Graph Class

Graph

- The following code shows a class contains methods for creating a vertex list and an adjacency matrix, and for adding vertices and edges to a graph
 object:
class graph
\{
private final int max_verts = 20;
private vertex vertexlist[];
private int adjMat[][];
private int nverts;
public graph()
\{

```
vertexlist = new vertex[max_verts];
adjMat = new[max_verts][max_verts];
nverts = 0;
for(int j=0; j<max_verts; j++)
for(int k=0; k<max_verts; k++)
adjMat[j][k] =0;
```


Graph

public void addvertex(char lab)

\{
vertexlist[nverts++] = new vertex(lab);
\}
public void addedge(int start, int end)
\{
adjMat[start][end] = 1;
adjMat[end][start] = 1;
\}
public void displayvertex(int v)
\{
System.out.print(vertexlist[v].label);
\}
\}

Searches

Graph

- One of the most fundamental operations to perform on a graph is finding which vertices can be reached from a specified vertex.
- There are two common approaches to searching a graph:
- Depth-first search (DFS)
- Breadth-first search (BFS)
- Both will eventually reach all connected vertices.
- The DFS is implemented with a stack, whereas the BFS is implemented with a queue.

Graph

- To carry out the DFS:
\square Pick a starting point, in this case, vertex A.
- You then do 3 things:
- visit this vertex,
- push it onto a stack, and
- mark it.
\square Next you go to any vertex adjacent to \mathbf{A} that has not yet been visited.
- You visit B, mark it, and push it on the stack. Now what? You are at B, and you do the same thing as before: go to an adjacent vertex that has not been visited. This lead you to \mathbf{F}. We can call this process Rule 1.

Graph

\square Rule 1: If possible, visit an adjacent unvisited vertex, mark it, and push it on the stack.

- Applying Rule 1 again leads you to H. At this point, however, you need to do something else because there are no unvisited vertices adjacent to \mathbf{H}. Here is where is Rule 2 comes in.
- Rule 2: If you can't follow Rule 1, then, if possible, pop a vertex off the stack.
- Following this rule, you pop H off the stack, which brings you back to F. F has no unvisited adjacent vertices, so you pop it, and also B. Now only A is left on the stack.
\square Rule 3: If you can not follow Rule 1 or Rule 2, you are done.

Graph

Graph

- The contents of the stack is the route you took from the starting vertex to get where you are. As you move away from the starting vertex, you push vertices as you go. As you move back toward the starting vertex, you pop them. The order in which you visit the vertices is ABFHCDGIE.

Java Code

Graph

- The adjacency matrix is the key.
- By going to the row for the specified vertex and stepping across the columns, you can pick out the columns with a 1 ; the column number is the number of an adjacent vertex. You can then check whether this vertex is unvisited. If so, you have found what you want, the next vertex to visit. If no vertices on the row are simultaneously 1 (adjacent) and also unvisited, there are no unvisited vertices adjacent to the specified vertex.
- We put the code for this process in the getadjunvisitedvertex() method:

Graph
 public int getadjunvisitedvertex(int v)

Data Structures \& Algorithms
\{
for(int j = 0 ; j<nverts; j++)
if(adjMat[v][j] == 1 \&\& vertexlist[j].wasvisited ==
false)
return j ;
return -1;
\}

Graph

- You can see how this code embodies the three rules listed earlier. It loops until the stack is empty. Within the loop, it does four things:
- It examines the vertex at the top of the stack, using peek().
- It tries to find an unvisited neighbors of this vertex.
- If it does not find one, it pops the stack.
- If it finds such a vertex, it visits that vertex and pushes it onto the stack.

```
Graph
public void dfs()
{
    vertexlist[0].wasvisited = true;
    displayvertex(0);
    thestack.push(0);
    while ( !thestack.isempty() ) {
    int v = getadjunvisitedvertex ( thestack.peek() );
        if (v == -1) // if no such vertex,
                        thestack.pop(); // pop a new one
            else
                {
                vertexlist[v].wasvisited = true;
                displayvertex(v);
                thestack.push(v);
                }
    }
    for (int j=0; j<nverts; j++)
    vertexlist[j].wasvisited = false;
```

\}

Graph

- At the end of dfs(), we reset all the wasvisited flags so we will be ready to run $\mathbf{d f s}()$ again later. The stack should already be empty, so it does not need to be reset.
- Now we have all the pieces of the graph class we need. Here is some code that creates a graph object, adds some vertices and edges to it, and then performs a depth-first search:

Graph

Graph thegraph = new graph();
Thegraph.addvertex('A');
Thegraph.addvertex('B');
Thegraph.addvertex('C');
Thegraph.addvertex('D');
Thegraph.addvertex('E');
Thegraph.addedge(0, 1);
Thegraph.addedge(1, 2);
Thegraph.addedge(0, 3);
Thegraph.addedge(0, 1);
System.out.print("Visits: ");
Thegraph.dfs();
System.out.println();

```
Graph
class graph
{
    private final int size = 20;
    private int[] st;
    private int top;
    public graph()
    {
        st = new int[size];
        top = -1;
    }
    public void push (int j)
    {
        st[++top] = j;
    }
```

```
Graph
public int pop()
    {
        return st[top--];
    }
    public int peek()
    {
        return st[top];
        }
        public boolean isempty()
        {
        return (top == -1);
    }
}
```


Graph

class vertex

Data Structures \& Algorithms
\{

public String city;

public boolean wasvisited;
public vertex(String cty)
\{
city = cty;
wasvisited = false; \}
\}

Graph

```
class graphs
{
    private final int max_verts = 20;
    private vertex vertexlist[];
    private int adjmat[[];
    private int nverts;
    private graph thestack;
    public graphs()
    {
        vertexlist = new vertex[max_verts];
        adjmat = new int[max_verts][max_verts];
        nverts = 0;
        for(int j=0; j<max_verts; j++)
            for(int k= 0; k<max_verts; k++)
            adjmat[j][k] = 0;
        thestack = new graph();
    }
```


Graph

public void addvertex(String cty)
\{ vertexlist[nverts++] = new vertex(cty);
\}
public void addedge(int start, int end)
\{
adjmat[start][end] = 1;
adjmat[end][start] = 1;
\}
public void displayvertex(int v)
\{
System.out.print(vertexlist[v].city);
System.out.print("-->");
\}

Graph

public void dfs()
\{
vertexlist[0].wasvisited = true;
System.out.println("From" + " " +vertexlist[0].city + "you can reach to the following cities: "); thestack.push(0);
while (!thestack.isempty())
\{ int $v=$ getadjunvisitedvertex(thestack.peek()); if ($v==-1$)
thestack.pop();
else
\{
vertexlist[v].wasvisited = true;
displayvertex(v);
thestack.push(v);
\}
\}
for(int j=0; j<nverts; j++)
vertexlist[j].wasvisited = false;
\}

Graph

public int getadjunvisitedvertex(int v)
\{
for(int j=0; j<nverts; j++)
if(adjmat[v][j] == 1 \&\& vertexlist[j].wasvisited == false) return j;
return -1;
\}
\}

```
Graph
class dfsapp
{
    public static void main (String\ args)
    {
        graphs thegraph = new graphs();
        thegraph.addvertex("Kabul");
        thegraph.addvertex("Ghazni");
        thegraph.addvertex("Jalal Abad");
        thegraph.addvertex("Mazar");
        thegraph.addvertex("Qundoz");
            thegraph.addedge(0, 1);
        thegraph.addedge(1, 2);
        thegraph.addedge(0, 3);
        thegraph.addedge(3, 4);
            System.out.print("Visits: ");
            thegraph.dfs();
        System.out.println();
    }
}
```


Graph

- To use the DFS algorithm for directed graph, we need the following modification:
 thegraph.addedge(0,1); thegraph.addedge(1, 0); thegraph.addedge(0, 4); thegraph.addedge(4, 0); thegraph.addedge(1, 2); thegraph.addedge(2, 1); thegraph.addedge(2, 3); thegraph.addedge(3, 2); thegraph.addedge (4, 5); thegraph.addedge(5, 4); thegraph.addedge(4, 6); thegraph.addedge(6, 4);

Graph

- Then we need to modify the addedge method as follow:
Data Structures \& Algorithms
public void addedge(int start, int end)
\{
adjmat[start][end] = 1;
\}

Breadth-First Search (BFS)

Graph

- DFS get as far away from the starting point as quickly as possible.
- BFS stay as close as possible to the starting point.
- BFS visits all the vertices adjacent to the starting vertex.
- Use queue instead of a stack.
- An example:
- A is the starting vertex, so you visit it and make it the current vertex. Then you follow these rules:
- Rule 1:
- Visit the next unvisited vertex (if there is one) that is adjacent to the current vertex, mark it, and insert it into the queue.

Graph

- Rule 2:
- If you can't carry out Rule 1 because there are no more unvisited vertices, remove a vertex from the queue (if possible) and make it the current vertex.
- Rule 3:
- If you can't carry out Rule 2 because the queue is empty, you are done.
- Thus, you visit all the vertices adjacent to \mathbf{A}, inserting each one into the queue as you visit it.
- There are no more unvisited vertices adjacent to \mathbf{A}, so you remove B from the queue and look for vertices adjacent to it.
- You find F, so you insert it in the queue. There are no more unvisited vertices adjacent to \mathbf{B}, so you remove \mathbf{C} from the queue, and so on.

Graph

- Event
- Visit A
- Visit B
- Visit C
- Visit D
- Visit E
- Remove B
- Visit F
- Remove C
- Remove D
- Visit G
- Remove E
- Remove F
- Visit H
- Remove G
- Visit I
- Remove H
- Remove I
- Done
- At each moment, the queue contains the vertices that have been visited but whose neighbors have not yet been fully explored. The node are visited in the order ABCDEFGHI.

Graph

- Note: the code is similar to DFS except for the inclusion of a queue class instead of a stack class and BFS method instead of DFS method.
public class graphqueue
\{
private final int size $=20$;
private int[] queArray;
private int front;
private int rear;
public graphqueue()
\{
queArray = new int[size];
front = 0;
rear = -1;

```
Graph
public void insert(int j) {
        if(rear == size - 1)
            rear = -1;
        queArray[++rear] = j;
    }
public int remove() {
            int temp = queArray[front++];
            if(front == size)
            front = 0;
            return temp;
        }
public boolean isempty() {
        return (rear + 1 == front);
    }
}
```

```
Graph
class vertex
{
    public char label;
    public boolean wasvisited;
    public vertex(char lab)
    {
        label = lab;
        wasvisited = false;
        }
```

 \}

Graph

class bfsgraph \{
private final int max_verts = 20;
private vertex vertexlist[];
private int adjmat[][];
private int nverts; private graphqueue thequeue; public bfsgraph() \{
vertexlist = new vertex[max_verts]; adjmat = new int[max_verts][max_verts];
nverts = 0;
for(int $\mathrm{j}=0$; $\mathrm{j}<$ max_verts; $\mathrm{j}++$)
for(int k= 0; k<max_verts; k++) adjmat[j][k] = 0;
thequeue = new graphqueue();
\}

```
Graph
public void addvertex(char lab)
        {
        vertexlist[nverts++] = new vertex(lab);
        }
    public void addedge(int start, int end)
        {
        adjmat[start][end] = 1;
        adjmat[end][start] = 1;
    }
public void displayvertex(int v)
    {
        System.out.print(vertexlist[v].label);
}
```


Graph

```
public void bfs() {
vertexlist[0].wasvisited = true;
displayvertex(0);
thequeue.insert(0);
int v2;
while (!thequeue.isempty() ) {
            int v1 = thequeue.remove();
            while((v2 = getadjunvisitedvertex(v1)) != -1) {
                vertexlist[v2].wasvisited = true;
                    displayvertex(v2);
                thequeue.insert(v2);
            }
        }
        for(int j=0; j<nverts; j++)
            vertexlist[j].wasvisited = false;
    }
```


Graph

public int getadjunvisitedvertex(int v) \{ for(int j=0; j<nverts; j++)
if(adjmat[[v][j] == 1 \&\& vertexlist[j].wasvisited == false)
return j ;
return -1;
\}
\}

```
Graph
class bfsapp {
    public static void main(String[] args) {
        bfsgraph thegraph = new bfsgraph();
        thegraph.addvertex('A');
        thegraph.addvertex('B');
        thegraph.addvertex('C');
        thegraph.addvertex('D');
        thegraph.addvertex('E');
        thegraph.addedge(0, 1);
        thegraph.addedge(1, 2);
        thegraph.addedge(0, 3);
        thegraph.addedge(3, 4);
        System.out.print("Visits: ");
        thegraph.bfs();
        System.out.println();
    }
}
```


Minimum Spanning Trees

Graph

- Remove any extra traces.
- The result would be a graph with the minimum number of edges necessary to connect the vertices.
- For example, figure (a) shows five vertices with an excessive number of edges, while figure (b) shows the same vertices with the minimum number of edges necessary to connect them.
- This constitutes a minimum spanning tree (MST).

By: S. Hassan Adelyar

Graph

- There are many possible MST.
- Figure (b) shows edges $A B, B C, C D$, and $D E$, but edges $A C$, CE, ED, and DB would do just as well.
- $\mathbf{E}=\mathrm{V}$ - 1
- We are not worried here about the length of the edges. We are not trying to find a minimum physical length.
- The algorithm for creating the minimum spanning tree can be based on either the DFS or the BFS.
- By executing the DFS and recording the edges you have traveled to make the search, you automatically create a minimum spanning tree.
- The only difference between the mst() and $\mathbf{d f s}()$ is that $\mathbf{m s t}()$ must somehow record the edges traveled.

Java Code

Graph

public void mst() \{

if(v == -1)
thestack.pop();
else \{
vertexlist[v].wasvisited = true; thestack.push(v);

By: S. Hassan Adelyar

Graph

displayvertex(currentvertex);

displayvertex(v);
System.out.print(" ");
displayvertex(v);
System.out.print(" ");
Data Structures \& Algorithms

\}

\}
for(int j=0; j<nverts; j++) vertexlist[j].wasvisited = false;
\}

Graph

class mststack \{

private final int size $=20$; private int[] st; private int top; public mststack() \{ st = new int[size]; top $=-1$;
\} public void push (int j) \{ st[++top] = j;
\}
> public int pop() \{ return st[top--];
> \}
> public int peek() \{
> return st[top];
> \}
> public boolean isempty() \{ return (top == -1);
> \}
> \}

Graph

class vertex

Data Structures \& Algorithms
\{

public char label;

public boolean wasvisited;
public vertex(char lab)
\{
label = lab;
wasvisited = false;
\}
\}
By: S. Hassan Adelyar

Graph

class mstgraph \{

private final int max_verts = 20;
private vertex vertexlist[];
private int adjmat[][];
private int nverts;
private mststack thestack;
public mstgraph() \{
vertexlist = new vertex[max_verts];
adjmat = new int[max_verts][max_verts];
nverts = 0;
for(int $\mathrm{j}=0$; $\mathrm{j}<$ max_verts; $\mathrm{j}++$)
for(int k= 0; k<max_verts; k++) adjmat[j][k] = 0;
thestack $=$ new mststack();
\}
By: S. Hassan Adelyar

```
Graph
public void addvertex(char lab)
    {
        vertexlist[nverts++] = new vertex(lab);
        }
public void addedge(int start, int end)
    {
        adjmat[start][end] = 1;
        adjmat[end][start] = 1;
    }
public void displayvertex(int v)
    {
        System.out.print(vertexlist[v].label);
}
```

```
Graph
public void mst() {
        vertexlist[0].wasvisited = true;
        thestack.push(0);
        while (!thestack.isempty() ) {
        int currentvertex = thestack.peek();
        int v = getadjunvisitedvertex(currentvertex);
        if(v == -1)
            thestack.pop();
        else {
            vertexlist[v].wasvisited = true;
            thestack.push(v);
            displayvertex(currentvertex);
            displayvertex(v);
            System.out.print(" ");
        }
        }
        for(int j=0; j<nverts; j++)
            vertexlist[j].wasvisited = false;
}
```


Graph

public int getadjunvisitedvertex(int v)
Data Structures \& Algorithms

\{

for(int j=0; j<nverts; j++)
if(adjmat[v][j] == 1 \&\& vertexlist[j].wasvisited ==
false)
return j;
return -1;
\}
\}

Graph

class mstapp \{
public static void main (String[] args) \{
mstgraph thegraph = new mstgraph();
sump!aofiv \% soınłonuls eqea
thegraph.addvertex('A');
thegraph.addvertex('B');
thegraph.addvertex('C');
thegraph.addvertex('D');
thegraph.addvertex('E');
thegraph.addedge(0, 1);
thegraph.addedge(0, 2);
thegraph.addedge(0, 3); thegraph.addedge(0, 4); thegraph.addedge(1, 2); thegraph.addedge(1, 3); thegraph.addedge(1, 4); thegraph.addedge(2, 3); thegraph.addedge(2, 4); thegraph.addedge(3, 4);
System.out.print("Minimum Spanning Tree: ");
thegraph.mst();
System.out.println();

Directed Graph

Graph

- The graph needs a feature: The edge need to have a direction. When this is the case, the graph is called a directed graph. In a directed graph you can proceed only one way along an edge. The arrows in the figure show the direction of the edges.

Graph

- In a program, the difference between a non-directed graph and a directed graph is that an edge in a directed graph has only one entry in the adjacency matrix. The following figure shows the adjacency matrix for the above figure:

-	A	B	C	
-	A	0	1	0
-	B	0	0	1
-	0	0	0	0

- Each edge is represented by a single 1. The row labels show where the edge starts, and the column labels show where it ends. Thus, the edge from A to B is represented by a single 1 at row A column B.
- For a non-directed graph half of the adjacency matrix mirrors the other half, so half the cells are redundant. However, for a weighted graph, every cell in the adjacency matrix conveys unique information.

Graph

- For a directed graph, the method that adds an edge thus needs only a single statement:
adjmat[start][end] = 1;
\}
- Connectivity in Directed Graphs
- We have seen how in a non-directed graph you can find all the vertices that are connected by doing a depth-first or breadth-first search. When we try to find all the connected vertices in a directed graph, things get more complicated. You can't just start from a randomly selected vertex and expect to reach all the other connected vertices. Consider the following graph:
- If you start on A, you can get to C but not to any of the other vertices. If you start on B, you can't get to D, and if you start on C, you can't get anywhere. The meaningful question about connectivity is: What vertices can you reach if you start on a particular vertex?

Warshall's Algorithm

Graph

- In some application it is important to find out quickly whether one vertex is reachable from another vertex.
- You could examine the connectivity table, but then you would need to look through all the entries on a given row, which would take $\mathbf{O}(\mathbf{N})$ time. But you are in a hurry; is there a faster way?
- It is possible to construct a table that will tell you instantly (that is, $\mathrm{O}(1)$ time) whether one vertex is reachable from another. Such a table can be obtained by systematically modifying a graph's adjacency matrix. The graph represented by this revised adjacency matrix is called the transitive closure of the original graph.
- In an ordinary adjacency matrix the row number indicates where an edge starts and the column number indicates where it ends. A 1 at the intersection of row \mathbf{C} and column \mathbf{D} means there is an edge from vertex \mathbf{C} to vertex \mathbf{D}. You can get from one vertex to the other in one step.

Graph

Graph

- We can use Warshall's algorithm to change the adjacency matrix into the transitive closure of the graph. This algorithm does a lot in a few lines of code. It is based on a simple idea:
- If you can get from vertex L to vertex \mathbf{M}, and you can get from \mathbf{M} to \mathbf{N}, then you can get from L to \mathbf{N}.
- We have derived a two-step path from two one-step paths. The adjacency matrix shows all possible one-step paths, so it is a good starting place to apply this rule.
- Row A
- We start with row A. There is nothing in columns A and B, but there is a 1 at column C, so we stop there. Now the 1 at this location says there is a path from A to C. If we knew there was a path from some vertex \mathbf{X} to \mathbf{A}, then we would know there was a path from \mathbf{X} to \mathbf{C}. Where are the edges (if any) that end at \mathbf{A} ? They are in column A. So we examine all the cells in column A. In the above table there is only one 1 in column A : at row B. It says there is an edge from B to A. So we know there is an edge from \mathbf{B} to \mathbf{A}, and another (the one we started with) from \mathbf{A} to C. From this we infer that we can get from \mathbf{B} to \mathbf{C} in two steps. You can verify this is true by looking at the graph.
- To record this result, we put a 1 at the intersection of row \mathbf{B} and column \mathbf{C}. The result is shown in the following table:
The remaining cells of row A are blank.

Graph

- Rows B, C, and D

- We go to row B. The first cell, at column A has a 1, indicating an edge from \mathbf{B} to \mathbf{A}. Are there any edges that end at \mathbf{B} ? We look in column B, but it is empty, so we know that none of the $\mathbf{1 s}$ we find in row B will result in finding longer paths because no edges end at \mathbf{B}.
Row \mathbf{C} has no 1s at all, so we go to row \mathbf{D}. Here we find an edge from D to E. However, column D is empty, so there are no edges that end on D.
- Row E

In row \mathbf{E} we see there is an edge from \mathbf{E} to \mathbf{C}. Looking in column \mathbf{E} we see the first entry is for the edge \mathbf{B} to \mathbf{E}, so with \mathbf{B} to \mathbf{E} and \mathbf{E} to \mathbf{C} we infer there is a path from \mathbf{B} to \mathbf{C}. However, it is already been discussed, as indicated by the 1 at that location.

- There is another $\mathbf{1}$ in column \mathbf{E}, at row \mathbf{D}. This edge from \mathbf{D} to \mathbf{E} plus the one from E to C imply a path from \mathbf{D} to \mathbf{C}, so we insert a 1 in that cell.
- Warshall's algorithm is now complete.

Implementation of Warshall Algorithm

Graph

- One way to implement Warshall algorithm is with 3 nested loops. The outer loop looks at each row; let's call its variable y. The loop inside that looks at each cell in the row; it use variable x. If a $\mathbf{1}$ is found in cell (x, y), there is an edge from y to x, and the third (innermost) loop is activated; it use variable \mathbf{z}. The third loop examines the cells in column y, looking for an edge that ends at \mathbf{y}. (Note that y is used for rows in the first loop but for the column in the third loop). If there is a $\mathbf{1}$ in column y at row z, then there is an edge from \mathbf{z} to \mathbf{y}. with one edge from \mathbf{z} to \mathbf{y} and another from \mathbf{y} to \mathbf{x} it follows that there is a path from \mathbf{z} to \mathbf{x}, so you can put a 1 at (\mathbf{x}, \mathbf{z}).

Weighted Graphs

Graph

- If vertices in a weighted graph represent cities, the weight of the edges might represent distance between the cities, or costs to fly between them. When we include weight as a feature of a graph's edges, some interesting and complex questions arise. What is the minimum spanning tree for a weighted graph?
- What is the shortest (or cheapest) distance from one vertex to another?
- Such questions have important applications in the real world.

Graph

- To introduce weighted graphs, we will return to the question of the minimum spanning tree. Creating such a tree is a bit more complicated with a weighted graph than with an unweighted one. When all edges are the same weight, it is fairly straightforward for the algorithm to choose one to add to the minimum spanning tree. But when edges can have different weights, some arithmetic is needed to choose the right one.

Creating the Algorithm

Graph

- The key activity in carrying out the algorithm is to maintain a list of the costs of links between pairs of nodes. A list in which we repeatedly select the minimum value suggests a priority queue as an appropriate data structure. In a serious program this priority queue might be based on a heap and this would speed up operations on large priority queues. However, in our example we will use a simple array.
- Outline of the Algorithm
- Start with a vertex, and put it in the tree. Then repeatedly do the following:
- Find all the edges from the newest vertex to other vertices that are not in the tree. Put these edges in the priority queue.
- Pick the edge with the lowest weight, and add this edge and its destination vertex to the tree.
- Repeat these steps until all the vertices are in the tree. At that point you are done.

Graph

- In a programming algorithm we make sure that we do not have any edges in the priority queue that lead to vertices that are already in the tree. We could go through the queue looking for and removing any such edges each time we added a new vertex to the tree. As it turns out, it is easier to keep only one edge from the tree to a given vertex in the priority queue at any given time.

Graph

- Java code:

- The following method creates the minimum spanning tree for a weighted graph, follows the algorithm outlined earlier. As in our other graph programs, it assumes there is a list of vertices in vertexlist[], and that it will start with the vertex at index 0 . the currentvertex variable represents the vertex most recently added to the tree.

Graph

public void mstw() \{
currentvertex $=0$;

while(ntree < nverts - 1) \{
vertexlist[currentvertex] .isintree = true;
ntree++;
// insert edges adjacent to currentvertex into PQ
for(int j = 0; j<nverts; j++)
\{

$$
\text { if(j == currentvertex })
$$ continue; if(vertexlist[j].isintree) continue; int distance $=$ adjmat[currentvertex][j]; if(distance == infinity) continue; putinpq(j, distance);

```
Graph
    if(thepq.size() == 0)
                {
                    System.out.println("Graph not connected");
                    return;
            }
            // remove edge with minimum distance, from pq
            edge theedge = thepq.removemin();
            int sourcevert = the edge.srcvert;
            currentvert = theedge.destvert;
            // display edge from source to current
            System.out.print( vertexlist[sourcevert].abel);
            System.out.print(vertexlist[currentvertex].label);
            System.out.print(" ");
    }
    for(int j=0; j<nverts; j++)
    vertexlist[j].isintree = false;
}

\section*{Graph}

The algorithm is carried out in the while loop, which terminate when all vertices are in the tree. Within this loop the following activities take place: The current vertex is placed in the tree. The edges adjacent to this vertex are placed in the priority queue.
Edge with the minimum weight is removed from the priority queue. The destination vertex of this edge becomes the current vertex.
The following is the code for putinpq() method:
```

 Graph
 public void putinpq(int newvert, int newdist) {
 int queueindex = thepq.find(newvert);
 if(queueindex != -1) {
 edge tempedge = thepq.peekn(queueindex);
 int olddist = tempedge.distance;
 if(olddist > newdist)
 {
 thepq.removen(queueindex);
 edge theedge = new edge(currentvertex, newvert, newdist);
 thepq.insert(theedge);
 }
 }
 else
 {
 edge theedge = new edge(currentvertex, newvert, newdist);
 thepq.insert(theedge);
 }
    ```


By: S. Hassan Adelyar

\section*{Graph}

\section*{class edge}
\{
public int srcvert; public int destvert; public int distance;
public edge(int sv, int dv, int d)
\{
srcvert = sv; destvert = dv; distance \(=d\);
\}
\}

\section*{Graph}
class graph \{
private final int max_verts \(=20\);
private final int infinity \(=10000\);
private vertex vertexlist[];
private int adjmat[][];
private int nverts;
private int currentvert;
private priorityq thepq;
private int ntree;
public graph() \{
vertexlist = new vertex[max_verts];
adjmat \(=\) new int[max_verts][max_verts];
nverts \(=0\);
for(int j=0; j<max_verts; j++)
for(int k=0; k<max_verts; k++)
adjmat \([j][\mathrm{k}]=\) infinity;
thepq \(=\) new priorityq();
```

Graph
public void addvertex(char lab)
{
vertexlist[nverts++] = new vertex(lab);
}
public void addedge(int start, int end, int weight)
{
adjmat[start][end] = weight;
adjmat[end][start] = weight;
}
public void displayvertex(int v)
{
System.out.print(vertexlist[v].label);
}

```

\section*{Graph}
```

public void mstw()

```
\{
currentvert = 0;
while(ntree < nverts-1)
\{
        vertexlist[currentvert].isintree = true;
        ntree++;
        for(int j=0; j< nverts; j++)
        \{
            if(j==currentvert)
            continue;
            if(vertexlist[j].isintree)
                continue;
            int distance \(=\) adjmat[currentvert][j];
            if(distance == infinity)
                continue;
            putinpq(j, distance);
        \}

\section*{Graph}
if(thepq.size2() == 0)
\{
System.out.println("Graph Not Connected");
return;
\}
edge theedge = thepq.removemin();
int sourcevert = theedge.srcvert; currentvert = theedge.destvert;

System.out.print(vertexlist[sourcevert].label);
System.out.print(vertexlist[currentvert].label);
System.out.print(" ");
\}
for(int \(\mathrm{j}=0\); \(\mathrm{j}<\) nverts; \(\mathrm{j}++\) )
vertexlist[j].isintree = false;
\}
```

Graph
public void putinpq(int newvert, int newdist) {
int queindex = thepq.find(newvert);
if(queindex != -1)
{
edge tempedge = thepq.peekn(queindex);
int olddist = tempedge.distance;
if(olddist > newdist)
{
thepq.removen(queindex);
edge theedge = new edge(currentvert, newvert, newdist);
thepq.insert(theedge);
}
}
else
{
edge theedge = new edge(currentvert, newvert, newdist);
thepq.insert(theedge);
}
}
}

Graph
 class vertex

\{
public char label; public boolean isintree;
public vertex(char lab)
\{
label = lab;
isintree = false;
\}
\}

```
Graph
class priorityq {
    private final int size = 20;
    private edge[] quearray;
    private int size2;
    public priorityq() {
        quearray = new edge[size];
        size2 = 0;
    }
        public void insert(edge item) {
        int j;
        for(j=0; j<size2; j++)
            if(item.distance >= quearray[j].distance)
                break;
        for(int k=size2-1; k>=j; k--)
            quearray[k+1] = quearray[k];
        quearray[j] = item;
        size2++;
```

 \}
    ```
    Graph
public edge removemin() {
            return quearray[--size2];
        }
        public void removen(int n) {
        for(int j=n; j<size2-1; j++)
            quearray[j] = quearray[j+1];
        size2--;
    }
    public edge peekmin() {
        return quearray[size2-1];
    }
    public int size2() {
        return size2;
    }
```

```
    Graph
public boolean isempty()
    {
        return (size2 == 0);
    }
    public edge peekn(int n)
    {
        return quearray[n];
    }
    public int find(int finddex)
    {
        for (int j=0; j<size2; j++)
        if(quearray[j].destvert == finddex)
            return j;
        return -1;
    }
}
```


Graph

class mstwapp \{
public static void main(String[] args) \{
graph thegraph = new graph();
Data Structures \& Algorithms
thegraph.addvertex('A');
thegraph.addvertex('B');
thegraph.addvertex('C');
thegraph.addvertex('D');
thegraph.addvertex('E');
thegraph.addvertex('F');
thegraph.addedge(0,1,6);
thegraph.addedge($0,3,4$);
thegraph.addedge $(1,2,10)$;
thegraph.addedge(1,3,7); thegraph.addedge $(1,4,7)$; thegraph.addedge(2,3,8); thegraph.addedge $(2,4,5)$; thegraph.addedge $(2,5,6)$; thegraph.addedge(3,4,12); thegraph.addedge $(4,5,7)$;
System.out.print("Minimum Spanning Tree: "); thegraph.mstw();
System.out.println();

Graph

Tree:ADBECF PQ

The Shortest-Path Problem

Graph

- The most commonly encountered problem associated with weighted graphs is that of finding the shortest path between two given vertices. This solution to this problem is applicable to a wide variety of real-world situations. It is more complex problem than we have seen before.
- The shortest-path problem is this: for a given starting point and destination, what is the cheapest route?
- Dijkstra's Algorithm
- The solution for the shortest-path problem is called Dijkstar's algorithm after Edsger Dijkstra, who first described it in 1959. This algorithm is based on the adjacency matrix representation of a graph. This algorithm finds not only the shortest path from one specified vertex to another, but also the shortest paths from the specified vertex to all the other vertices.

Graph

By: S. Hassan Adelyar

Java code

Graph

- The code for the shortest-path algorithm may be the most complex. The key data structure in the shortest-path algorithm is an array that keeps track of the minimum distances from the starting vertex to the other vertices (destination vertices). During the execution of the algorithm, these distances are changed, until at the end they hold the actual shortest distances from the start. In the example code, this array is called spath[].
- It is important to record not only the minimum distance from the starting vertex to each destination vertex, but also the path taken. Fortunately, the entire path need not be explicitly stored. It is only necessary to store the parent of the destination vertex. The parent is the vertex reached just before the destination. There are several ways to keep track of the parent vertex, but we choose to combine the parent with the distance and put the resulting object into the spath[] array. We call this class of objects Distpar (for distance parent).

Graph
 class distpar

Data Structures \& Algorithms
$\{$
public int distance; public int parentvert; public distpar (int pv, int d)
\{
distance = d; parentvert = pv;

Graph

- The path() method:
- The path() method carries out the actual shortest-path algorithm. It uses the distpar class and the vertex class, which we saw in the mstw. The path() method is a member of the graph class.

```
Graph
public void path() {
int starttree =0;
vertexlist[starttree].isintree = true;
ntree = 1;
for(int j=0; j<nverts; j++)
{
        int tempdist = adjmat[starttree][j];
        spath[j] = new distpar(starttree, tempdist);
    }
    while(ntree < nverts)
    {
        int indexmin = getmin();
        int mindist = spath[indexmin].distance;
```

```
Graph
if(mindist == infinity) {
System.out.println("There are unreachable vertices");
break;
        }
        else
    {
        currentvert = indexmin;
        starttocurrent = spath[indexmin].distance;
        }
        vertexlist[currentvert].isintree =true;
        ntree++;
        adjust_spath();
        }
        displaypaths();
    ntree =0;
    for(int j=0; j<nverts; j++)
    vertexlist[j].isintree = false;
}

\section*{Graph}
- The starting vertex is always at index 0 of the vertexlist[ ] array. The first task in path() is to put this vertex into the tree. As the algorithm proceeds, we will be moving other vertices into the tree as well. The vertex object contain a flag that indicates whether a vertex object is in the tree. Putting a vertex in the tree consists of setting this flag and incrementing ntree, which counts how many vertices are in the tree.
- Second, path() copies the distance from the appropriate row of the adjacency matrix to spath[ ]. This is always row 0 , because for simplicity we assume 0 is the index of the starting vertex. Initially, the parent field of all the spath[] entries is A, the starting vertex.
- The while loop of the algorithm terminates after all the vertices have been placed in the tree.

\section*{Graph}
- There are basically 3 actions in this loop:
- Choose the spath[ ] entry with the minimum distance.
- Put the corresponding vertex in the tree. This becomes the "current vertex" currentvert.
- Update all the spath [ ] entries to reflect distances from currentvert.
- If path() finds that the minimum distance is infinity, it knows that some vertices are unreachable from the starting point. Why? Because not all the vertices are in the tree (the while loop has not terminated), and yet there is no way to get to these extra vertices; if there were, there would be a noninfinite distance.
- To find the spath[ ] entry with the minimum distance, path() calls the getmin() method. This straightforward; it steps across the spath[] entries and return with the column number of the entry with the minimum distance.

\section*{Graph}
- Updating spath[] with adjust_spath():
- The adjust_spath() method is used to update the spath[ ] entries to reflect new information obtained from the vertex just inserted in the tree. When this routine is called, currentvert has just been placed in the tree, and starttocurrent is the current entry in spath [ ] for this vertex. The adjust_spath() method now examine each vertex entry in spath[ ], using the loop counter column to point to each vertex in turn.
- For each spath[ ] entry, provided the vertex is not in the tree, it does three things:
- It adds the distance to the current (already calculated and now in starttocurrent ) to the edge distance from currentvert to the column vertex. we call the result starttofringe.
- It compares starttofringe with the current entry in spath [].
- If starttofringe is less, it replaces the entry in spath [ ].
- This is the heart of Dijkstra's algorithm. It keeps spath [] updated with the shortest distances to all the vertices that are currently known.
        parentvert = pv;

\section*{Graph \\ class vertex2}
\{
public char label; public boolean isintree; public vertex2(char lab) \{
label = lab; isintree = false; \}
\}

\section*{Graph}
class graph2
\{
private final int max_verts \(=20\);
private final int infinity = 10000;
private vertex2 vertexlist[];
private int adjmat[]];
private int nverts;
private int ntree;
private distpar spath\];
private int currentvert;
private int starttocurrent;
```

Graph
public graph2() {
vertexlist = new vertex2[max_verts];
adjmat = new int[max_verts][max_verts];
nverts = 0;
ntree = 0;
for(int j=0; j<max_verts; j++)
for(int k=0; k<max_verts; k++)
adjmat[j][k] = infinity;
spath = new distpar[max_verts];
}
public void addvertex(char lab)
{
vertexlist[nverts++] = new vertex2(lab);
}
public void addedge(int start, int end, int weight)
{
adjmat[start][end] = weight;
}

```

\section*{Graph}
public void path() \{
int starttree \(=0\);
Data Structures \& Algorithms
vertexlist[starttree].isintree = true;
ntree = 1;
for(int j=0; j<nverts; j++)
\{
int tempdist = adjmat[starttree][j]; spath[j] = new distpar(starttree, tempdist); \}
while(ntree < nverts) \{
int indexmin = getmin();
int mindist \(=\) spath[indexmin].distance;
if(mindist == infinity)
\{
System.out.println("There are unreachable vertices");
break;
\}

\section*{Else \{}
currentvert = indexmin;
starttocurrent =
spath[indexmin].distance;
\}
vertexlist[currentvert].isintree =true; ntree++; adjust_spath();
\}
displaypaths();
ntree \(=0\);
for(int \(\mathrm{j}=0\); \(\mathrm{j}<\) nverts; \(\mathrm{j}++\) )
vertexlist[j].isintree = false;
\}

\section*{Graph}

\section*{public int getmin()}
\{
int mindist \(=\) infinity;
int indexmin = 0;
for(int j=1; j<nverts; j++)
\{
if(!vertexlist[j].isintree \&\& spath[j].distance < mindist)
\{
mindist \(=\) spath[j].distance; indexmin = j;
\}
\}
return indexmin;
```

Graph
public void adjust_spath() {
int column = 1;
while(column < nverts) {
if(vertexlist[column].isintree)
{
column++;
continue;
}
int currenttofringe = adjmat[currentvert][column];
int starttofringe = starttocurrent + currenttofringe;
int spathdist = spath[column].distance;
if(starttofringe < spathdist)
{
spath[column].parentvert = currentvert;
spath[column].distance = starttofringe;
}
column++;
}
}

Graph

public void displaypaths()

\square
for(int j=0; j<nverts; j++)
\{

System.out.print(vertexlist[j].label + "=");
if(spath[j].distance == infinity)
System.out.print("inf");
else
System.out.print(spath[j].distance);
char parent = vertexlist[spath[j].parentvert].label;
System.out.print("(" + parent + ") ");
\}
System.out.println(" ");
\}

```
    Graph
class pathapp {
    public static void main (String[] args) {
            graph2 thegraph = new graph2();
            thegraph.addvertex('A');
            thegraph.addvertex('C');
            thegraph.addvertex('B');
            thegraph.addvertex('D');
            thegraph.addvertex('E');
            thegraph.addedge(0,1,50);
            thegraph.addedge(0,3,80);
            thegraph.addedge(1,2,60);
            thegraph.addedge(1,3,90);
            thegraph.addedge(2,4,40);
            thegraph.addedge(3,2,20);
            thegraph.addedge(3,4,70);
            thegraph.addedge(4,1,50);
            System.out.println("Shotest paths");
            thegraph.path();
            System.out.println();
    }
}
```


Data Structures \& Algorithms

By: S. Hassan Adelyar

