
2 July, 2010
1

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A

Splay Trees

ta
 S

tr
uc

tu
D

at

By: S. Hassan Adelyar

2 July, 2010
2 Splay Trees

Splay Trees

s

Support all of the BST operations but does not
t O (L) t f

A
lg

or
ith

m guarantee O (Log n) worst-case performance.
Its bound is amortized, meaning, although
i di id l ti b i

re
s

an
d

A individual operations can be expensive, any
sequence of operations is guaranteed to be
logarithmic

ta
 S

tr
uc

tu logarithmic.
Because this is a weaker guarantee than that
pro ided b balanced BST onl the data and t o

D
at provided by balanced BST, only the data and two

references per node are required for each item
and the operations are somewhat simpler

By: S. Hassan Adelyar

and the operations are somewhat simpler.

2 July, 2010
3

Splay Trees

s

Although balanced BST provide logarithmic
t i ti ti th h

A
lg

or
ith

m worst-case running-time per operation, they have
several limitations:

R i t i t b l i i f ti

re
s

an
d

A Require storing an extra balancing information
They are complicated to implement. As a result,
insertions and deletions are expensive and

ta
 S

tr
uc

tu insertions and deletions are expensive and
potentially error-prone.
We don’t win when easy inputs occur.

D
at

y p

By: S. Hassan Adelyar

2 July, 2010
4

Splay Trees

s

The performance of a balance BST is improvable. That is,
there worst-case, average-case, and best-case performance

A
lg

or
ith

m

, g , p
are essentially identical.
An example is a find operation for some item X. It is

re
s

an
d

A reasonable to expect not only that the cost of the find will be
logarithmic, but also that if we perform an immediate
second find for X, the second access will be cheaper than the

ta
 S

tr
uc

tu

second find for X, the second access will be cheaper than the
first. In a red-black trees this is not true.
We would also expect that if we perform an access of X, Y,

D
at and Z, then a second set of accesses for the same

sequence would be easy.
90 10 rule

By: S. Hassan Adelyar

90-10 rule.

2 July, 2010
5

Splay Trees

s

The 90 -10 rule has been used for many years in
disk I/O system

A
lg

or
ith

m disk I/O system.
A cache stores in main memory the contents of
some of the disk blocks

re
s

an
d

A some of the disk blocks.
Browsers use the same idea: a cache stores locally
the previously visited Web Pages

ta
 S

tr
uc

tu the previously visited Web Pages.

D
at

By: S. Hassan Adelyar

2 July, 2010
6 Amortized Time Bounds

Splay Trees

s

There is, however, a reasonable compromise:
O(N) ti f i l b t bl

A
lg

or
ith

m O(N) time for a single access may be acceptable
as long as it does not happen too often. In
particular any M operations take a total of O

re
s

an
d

A particular any M operations take a total of O
(MLog N) worst-case time, then the fact that
some operations are expensive might be

ta
 S

tr
uc

tu some operations are expensive might be
inconsequential.

D
at

By: S. Hassan Adelyar

2 July, 2010
7

Splay Trees

s

When we can show a worst-case bound for a
sequence of operations that is better than the

A
lg

or
ith

m sequence of operations that is better than the
corresponding bound obtained by considering each
operation separately, the running time is said to be

re
s

an
d

A operation separately, the running time is said to be
amortized.
Some single operations may take more than

ta
 S

tr
uc

tu

g p y
logarithmic time.
However, amortized bounds are not always

D
at

y
acceptable. Specifically, if a single bad operation is
too time-consuming, then we really need worst-case
b d h h i d b d

By: S. Hassan Adelyar

bounds rather than amortized bounds.

2 July, 2010
8 A simple self-adjusting strategy (that does not work)

Splay Trees

s

The easiest way to move an item toward the root
i t t t it ti ll ith it t til it

A
lg

or
ith

m is to rotate it continually with its parent until it
becomes a root node.
Th if th it i d d ti th

re
s

an
d

A Then, if the item is accessed a second time, the
second access is cheap.
E if f th ti i t b f th

ta
 S

tr
uc

tu Even if a few other operations intervene before the
item is re-accessed, that item will remain close to
the root and th s ill be q ickl fo nd

D
at the root and thus will be quickly found.

This process is called rotate-to-root strategy.

By: S. Hassan Adelyar

2 July, 2010
9

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: S. Hassan Adelyar

2 July, 2010
10

Splay Trees

s

Future access to node 3 is cheaper. But node 4
d 5 h d l l

A
lg

or
ith

m and 5 each move down a level.
This means that if access patterns do not follow
th 90 10 l it i ibl f l

re
s

an
d

A the 90-10 rule, it is possible for a long sequence
of bad accesses to occur.
A lt th t t t t l ill t h

ta
 S

tr
uc

tu As a result, the rotate-to-root rule will not have
logarithmic amortized behavior; this will be

nacceptable

D
at unacceptable.

By: S. Hassan Adelyar

2 July, 2010
11 Basic Bottom-up Splay

Splay Trees

s

Achieving logarithmic amortized cost seems
i ibl b h it t

A
lg

or
ith

m impossible because when we move an item to
root via rotations, other items are pushed
deeper

re
s

an
d

A deeper.
It means there would always be some very depth
nodes if no balancing information is

ta
 S

tr
uc

tu nodes, if no balancing information is
maintained.
There is a simple fi to the rotate to root strateg

D
at There is a simple fix to the rotate-to-root strategy

that allows the logarithmic amortized bound to
be obtained The resulting rotate to root strategy

By: S. Hassan Adelyar

be obtained. The resulting rotate-to-root strategy
is called splaying.

2 July, 2010
12

Splay Trees

s

Let X be a non-root node on the access path on
hi h t ti

A
lg

or
ith

m which we are rotating.
If the parent of X is the root of the tree, we merely

t t X d th t h i fi 21 4

re
s

an
d

A rotate X and the root as shown in figure 21.4.
This is the last rotation along the access path,

d it l X t th t

ta
 S

tr
uc

tu and it places X at the root.
This is a zig case.

D
at

By: S. Hassan Adelyar

2 July, 2010
13

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Figure 21.4 Zig case (Normal single rotation)

By: S. Hassan Adelyar

Figure 21.4 Zig case (Normal single rotation)

2 July, 2010
14

Splay Trees

s

Otherwise, X has both a parent P and a
d t G d th t l

A
lg

or
ith

m grandparent G, and there are two cases plus
symmetries to consider.
Zi hi h d t th i id

re
s

an
d

A Zig-zag case, which corresponds to the inside
case for AVL trees. Here X is a right child and P
is a left child (or vice versa) We perform a

ta
 S

tr
uc

tu is a left child (or vice versa). We perform a
double rotation, exactly like an AVL double
rotation as shown in figure 21 5

D
at rotation, as shown in figure 21.5.

In figure 21.1, the splay at node 3 is a single zig-
zag rotation

By: S. Hassan Adelyar

zag rotation.

2 July, 2010
15

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Figure 21.5 Zig-zag case (some as a double rotation); the symmetric
case has been omited.

By: S. Hassan Adelyar

2 July, 2010
16

Splay Trees

s

Zig-zig case, which is the outside case for AVL
t H X d P ith b th l ft hild

A
lg

or
ith

m trees. Here, X and P are either both left children
or both right children. In this case, we transform
the left hand tree of figure 21 6 to the right hand

re
s

an
d

A the left-hand tree of figure 21.6 to the right-hand
tree.
This zig zig splay rotates between P and G and

ta
 S

tr
uc

tu This zig-zig splay rotates between P and G and
then X and P.

D
at

By: S. Hassan Adelyar

2 July, 2010
17

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Figure 21.6 Zig-zig case (this is unique to the splay tree); the
symmetric case has been omited

By: S. Hassan Adelyar

symmetric case has been omited

2 July, 2010
18

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Figure 21.7 Result of splaying at node 1 (three zig-zigs and a zig)

By: S. Hassan Adelyar

2 July, 2010
19

Splay Trees

s

Splaying not only moves the accessed node to the
t It l hl h l th d th f t

A
lg

or
ith

m root. It also roughly halves the depth of most
nodes on the access path.

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: S. Hassan Adelyar

2 July, 2010
20

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Figure 21.8 The remove operation applied to node 6: first 6 is splayed to the root, thus
leaving two sub trees; a findMax on the left sub tree is performed raising 5 to the root of the

By: S. Hassan Adelyar

leaving two sub-trees; a findMax on the left sub-tree is performed, raising 5 to the root of the
left sub-tree; then the right sub-tree can be attached (not shown)

2 July, 2010
21 Analysis of Bottom-up Splaying

Splay Trees

s

The analysis of splay tree algorithm is complicated
because each splay vary from a few rotations to O (N)

A
lg

or
ith

m

p y y ()
rotations. Furthermore, unlike with balanced search trees,
each splay changes the structure of the tree. This section
proves that the amortized cost of a splay is at most 3log
N 1 i l t ti Th l t ’ ti d b d

re
s

an
d

A N+1 single rotations. The splay tree’s amortized bound
guarantees that any sequence of M splays will use at
most 3Mlog N+M tree rotations, and consequently any

f M ti t ti f t t ill

ta
 S

tr
uc

tu sequence of M operations starting from an empty tree will
take a total of at most O (M log N) time.
To prove this bound, we introduce an accounting function

D
at

p g
called the potential function. The potential function is not
maintained by the algorithm. Rather it is merely an
accounting device that aids in establishing the required
ti b d It h i i t b i d i th lt f

By: S. Hassan Adelyar

time bound. Its choice is not obvious and is the result of a
large amount of trial and error. See pages 624 – 630.

2 July, 2010
22 Top-down Splay Trees

Splay Trees

s

Bottom-up splay require two pass. This can be done
either by maintaining parent references by storing the

A
lg

or
ith

m either by maintaining parent references, by storing the
access path on a stack, or by using a clever trick to
store the path using the available references in the

re
s

an
d

A accessed nodes.
Unfortunately, all of these methods require a substantial

t f h d d t h dl i l

ta
 S

tr
uc

tu amount of overhead, and we must handle many special
cases. This section describes a top-down splay tree that
maintains the logarithmic amortized bound. The top-

D
at

maintains the logarithmic amortized bound. The top
down procedure is faster in practice and uses only
constant extra space. It is the method recommended by
th i t f l t

By: S. Hassan Adelyar

the inventors of splay tree.

2 July, 2010
23

Splay Trees

s

As we descend the tree in our search for some
node X we must take the nodes that are on the

A
lg

or
ith

m node X, we must take the nodes that are on the
access path and move them and their sub-trees
out of the way. We must also perform some tree

re
s

an
d

A y p
rotations to guarantee the amortized time
bound. At any point in the middle of the splay,
th i t d X th t i th t f it

ta
 S

tr
uc

tu there is a current node X that is the root of its
sub-tree; this is represented in the diagrams as
the middle tree Tree L stores nodes that are less

D
at the middle tree. Tree L stores nodes that are less

than X; similarly, tree R stores nodes that are
larger than X. Initially, X is the root of T, and L

By: S. Hassan Adelyar

and R are empty.

2 July, 2010
24

Splay Trees

s

Descending the tree two levels at a time, we encounter a
pair of nodes Depending on whether these nodes are

A
lg

or
ith

m pair of nodes. Depending on whether these nodes are
smaller than X or larger than X, they are placed in L or R
along with sub-trees that are not on the access path to X.

re
s

an
d

A Thus the current node on the search path is always the
root of the middle tree. When we finally reach X, we can
then attach L and R to the bottom of the of the middle

ta
 S

tr
uc

tu then attach L and R to the bottom of the of the middle
tree. As a result, X will have been moved to the root. The
issue then is how nodes are placed into L and R and how

D
at

p
the reattachment is performed at the end. This is what the
tree in figure 21.9 are illustrating.

By: S. Hassan Adelyar

2 July, 2010
25

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: S. Hassan AdelyarFigure 21.9 continue (see next page)

2 July, 2010
26

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Figure 21.9 Top-down splay rotations; zig(top), zig-zig
(iddl) d i (b)

By: S. Hassan Adelyar

(middle), and zig-zag (bottom)

2 July, 2010
27

Splay Trees

s

In all the pictures, X is the current node, Y is its child,
and Z is a grandchild.

A
lg

or
ith

m

and Z is a grandchild.
If the rotation should be a zig, then the tree rooted at Y
becomes the new root of the middle tree. X and sub-tree
B tt h d l ft hild f th ll t it i R

re
s

an
d

A B are attached as a left child of the smallest item in R;
X’s left child is logically made null. As a result, X is the
new smallest element in R, thus making future attachment

ta
 S

tr
uc

tu easy.
Notice carefully that Y does not have to be a leaf for the
zig case to apply If the item sought is found in Y a zig

D
at zig case to apply. If the item sought is found in Y, a zig

case will apply even if Y has children. A zig case also
applies if the item sought is smaller than Y and Y has no
l ft hild if Y h i ht hild d l f th

By: S. Hassan Adelyar

left child, even if Y has a right child, and also for the
symmetric case.

2 July, 2010
28

Splay Trees

s

A similar discussion applies to the zig-zig case. The crucial point is that a
rotation between X and Y is performed. The zig-zag case brings the
b tt d Z t th t f th iddl t d tt h b t X d

A
lg

or
ith

m bottom node Z to the top of the middle tree and attaches sub-trees X and
Y to R and L, respectively. Note that Y is attached to, and then becomes, the
largest item in L.
The zig-zag step can be simplified somewhat because no rotations are

re
s

an
d

A The zig-zag step can be simplified somewhat because no rotations are
performed. Instead of making Z the root of the middle tree, we make Y the
root. This is shown in figure 21.10. This simplifies the coding because the
action for the zig-zag case becomes identical to the zig case. This would

d t i t ti f h t f i ti i Th

ta
 S

tr
uc

tu seem advantages, since testing for a host of cases is time-consuming. The
disadvantages is that a descent of only one level results in more iterations
in the splaying procedure.
Once we performed the final splaying step then L R and the middle tree

D
at Once we performed the final splaying step, then L, R, and the middle tree

are arranged to form a single tree, as shown in figure 21.11. Notice
carefully that the result is different from that obtained with bottom-up
splaying. The crucial fact is that the O (log N) amortized bound is

By: S. Hassan Adelyar

preserved.

2 July, 2010
29

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Fi 21 10 Si lifi d t d i

By: S. Hassan Adelyar

Figure 21.10: Simplified top-down zig-zag

2 July, 2010
30

Splay Trees

s
A

lg
or

ith
m

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

By: S. Hassan Adelyar

Figure 21.11: Final arrangement for top-down splaying

2 July, 2010
31

Splay Trees

s

An example of the simplified top-down splaying
algorithm is shown in figure 21 12 We attempt to access

A
lg

or
ith

m algorithm is shown in figure 21.12. We attempt to access
19 in the tree. The first step is a zig-zag. In accordance
with a symmetric version of figure 21.10, we bring the

re
s

an
d

A sub-tree rooted at 25 to the root of the middle tree and
attach 12 and its left sub-tree to L. Next, we have a zig-
zig: 15 is elevated to the root of the middle tree and a

ta
 S

tr
uc

tu zig: 15 is elevated to the root of the middle tree, and a
rotation between 20 and 25 is performed, with the
resulting sub-tree being attached to R. The search for 19

D
at

g g
then results in a terminal zig. The middle’s new root is 18,
and 15 and its left sub-tree are attached as a right child
of L’s largest node The reassembly in accordance with

By: S. Hassan Adelyar

of L’s largest node. The reassembly, in accordance with
figure 21.11, terminates the splay step.

2 July, 2010
32

Splay Trees

s Empty Empty

A
lg

or
ith

m

Empty Empty

re
s

an
d

A
ta

 S
tr

uc
tu

Empty
Simplified zig-zag

D
at

By: S. Hassan Adelyar

2 July, 2010
33

Splay Trees

s

Zig-zig

A
lg

or
ith

m
re

s
an

d
A

ta
 S

tr
uc

tu Zig

D
at

By: S. Hassan Adelyar

2 July, 2010
34

Splay Trees

s Reassemble

A
lg

or
ith

m Reassemble

re
s

an
d

A
ta

 S
tr

uc
tu

D
at

Fi 21 12 S i d l (i 19 i)

By: S. Hassan Adelyar

Figure 21.12: Steps in a top-down splay (accessing 19 in top tree)

