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Support all of the BST operations but does not
t O (L ) t f

A
lg

or
ith

m guarantee O (Log n) worst-case performance.
Its bound is amortized, meaning, although 
i di id l ti b i

re
s 

an
d 

A individual operations can be expensive, any 
sequence of operations is guaranteed to be 
logarithmic

ta
 S

tr
uc

tu logarithmic. 
Because this is a weaker guarantee than that 
pro ided b balanced BST onl the data and t o

D
at provided by balanced BST, only the data and two 

references per node are required for each item 
and the operations are somewhat simpler

By: S. Hassan Adelyar

and the operations are somewhat simpler.
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Although balanced BST provide logarithmic
t i ti ti th h

A
lg

or
ith

m worst-case running-time per operation, they have 
several limitations:

R i t i t b l i i f ti

re
s 

an
d 

A Require storing an extra balancing information
They are complicated to implement. As a result, 
insertions and deletions are expensive and

ta
 S

tr
uc

tu insertions and deletions are expensive and 
potentially error-prone.
We don’t win when easy inputs occur.

D
at

y p
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The performance of a balance BST is improvable. That is, 
there worst-case, average-case, and best-case performance 

A
lg

or
ith

m

, g , p
are essentially identical. 
An example is a find operation for some item X. It is 

re
s 

an
d 

A reasonable to expect not only that the cost of the find will be 
logarithmic, but also that if we perform an immediate
second find for X, the second access will be cheaper than the

ta
 S

tr
uc

tu

second find for X, the second access will be cheaper than the 
first. In a red-black trees this is not true. 
We would also expect that if we perform an access of X, Y, 

D
at and Z, then a second set of accesses for the same 

sequence would be easy. 
90 10 rule
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90-10 rule. 
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The 90 -10 rule has been used for many years in 
disk I/O system

A
lg

or
ith

m disk I/O system. 
A cache stores in main memory the contents of 
some of the disk blocks

re
s 

an
d 

A some of the disk blocks. 
Browsers use the same idea: a cache stores locally 
the previously visited Web Pages

ta
 S

tr
uc

tu the previously visited Web Pages.   

D
at
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There is, however, a reasonable compromise: 
O(N) ti f i l b t bl

A
lg

or
ith

m O(N) time for a single access may be acceptable
as long as it does not happen too often. In 
particular any M operations take a total of O

re
s 

an
d 

A particular any M operations take a total of O 
(MLog N) worst-case time, then the fact that 
some operations are expensive might be

ta
 S

tr
uc

tu some operations are expensive might be 
inconsequential.

D
at
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When we can show a worst-case bound for a 
sequence of operations that is better than the

A
lg

or
ith

m sequence of operations that is better than the 
corresponding bound obtained by considering each
operation separately, the running time is said to be

re
s 

an
d 

A operation separately, the running time is said to be 
amortized. 
Some single operations may take more than 

ta
 S

tr
uc

tu

g p y
logarithmic time.
However, amortized bounds are not always

D
at

y
acceptable. Specifically, if a single bad operation is 
too time-consuming, then we really need worst-case 
b d h h i d b d

By: S. Hassan Adelyar

bounds rather than amortized bounds. 
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The easiest way to move an item toward the root
i t t t it ti ll ith it t til it

A
lg

or
ith

m is to rotate it continually with its parent until it 
becomes a root node. 
Th if th it i d d ti th

re
s 

an
d 

A Then, if the item is accessed a second time, the 
second access is cheap. 
E if f th ti i t b f th

ta
 S

tr
uc

tu Even if a few other operations intervene before the 
item is re-accessed, that item will remain close to 
the root and th s ill be q ickl fo nd

D
at the root and thus will be quickly found. 

This process is called rotate-to-root strategy. 
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Future access to node 3 is cheaper. But node 4
d 5 h d l l

A
lg

or
ith

m and 5 each move down a level. 
This means that if access patterns do not follow 
th 90 10 l it i ibl f l

re
s 

an
d 

A the 90-10 rule, it is possible for a long sequence
of bad accesses to occur. 
A lt th t t t t l ill t h

ta
 S

tr
uc

tu As a result, the rotate-to-root rule will not have 
logarithmic amortized behavior; this will be 

nacceptable

D
at unacceptable. 
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Achieving logarithmic amortized cost seems 
i ibl b h it t

A
lg

or
ith

m impossible because when we move an item to 
root via rotations, other items are pushed 
deeper

re
s 

an
d 

A deeper. 
It means there would always be some very depth 
nodes if no balancing information is

ta
 S

tr
uc

tu nodes, if no balancing information is 
maintained. 
There is a simple fi to the rotate to root strateg

D
at There is a simple fix to the rotate-to-root strategy 

that allows the logarithmic amortized bound to 
be obtained The resulting rotate to root strategy

By: S. Hassan Adelyar

be obtained. The resulting rotate-to-root strategy 
is called splaying.   
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Let X be a non-root node on the access path on 
hi h t ti

A
lg

or
ith

m which we are rotating. 
If the parent of X is the root of the tree, we merely 

t t X d th t h i fi 21 4

re
s 

an
d 

A rotate X and the root as shown in figure 21.4. 
This is the last rotation along the access path, 

d it l X t th t

ta
 S

tr
uc

tu and it places X at the root. 
This is a zig case.  

D
at
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Figure 21.4 Zig case (Normal single rotation)
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Figure 21.4  Zig case (Normal single rotation)
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Otherwise, X has both a parent P and a 
d t G d th t l

A
lg

or
ith

m grandparent G, and there are two cases plus 
symmetries to consider. 
Zi hi h d t th i id

re
s 

an
d 

A Zig-zag case, which corresponds to the inside
case for AVL trees. Here X is a right child and P
is a left child (or vice versa) We perform a

ta
 S

tr
uc

tu is a left child (or vice versa). We perform a 
double rotation, exactly like an AVL double 
rotation as shown in figure 21 5

D
at rotation, as shown in figure 21.5. 

In figure 21.1, the splay at node 3 is a single zig-
zag rotation

By: S. Hassan Adelyar

zag rotation.   
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Figure 21.5 Zig-zag case (some as a double rotation); the symmetric 
case has been omited.
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Zig-zig case, which is the outside case for AVL
t H X d P ith b th l ft hild

A
lg

or
ith

m trees. Here, X and P are either both left children 
or both right children. In this case, we transform
the left hand tree of figure 21 6 to the right hand

re
s 

an
d 

A the left-hand tree of figure 21.6 to the right-hand
tree. 
This zig zig splay rotates between P and G and

ta
 S

tr
uc

tu This zig-zig splay rotates between P and G and 
then X and P.

D
at
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Figure 21.6 Zig-zig case (this is unique to the splay tree); the 
symmetric case has been omited
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symmetric case has been omited



2 July,  2010
18

Splay Trees

s
A

lg
or

ith
m

re
s 

an
d 

A
ta

 S
tr

uc
tu

D
at

Figure 21.7 Result of splaying at node 1 (three zig-zigs and a zig) 
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Splaying not only moves the accessed node to the 
t It l hl h l th d th f t

A
lg

or
ith

m root. It also roughly halves the depth of most 
nodes on the access path. 
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Figure 21.8 The remove operation applied to node 6: first 6 is splayed to the root, thus 
leaving two sub trees; a findMax on the left sub tree is performed raising 5 to the root of the

By: S. Hassan Adelyar

leaving two sub-trees; a findMax on the left sub-tree is performed, raising 5 to the root of the 
left sub-tree; then the right sub-tree can be attached (not shown)
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The analysis of splay tree algorithm is complicated
because each splay vary from a few rotations to O (N)

A
lg

or
ith

m

p y y ( )
rotations. Furthermore, unlike with balanced search trees, 
each splay changes the structure of the tree. This section 
proves that the amortized cost of a splay is at most 3log 
N 1 i l t ti Th l t ’ ti d b d

re
s 

an
d 

A N+1 single rotations. The splay tree’s amortized bound 
guarantees that any sequence of M splays will use at 
most 3Mlog N+M tree rotations, and consequently any 

f M ti t ti f t t ill

ta
 S

tr
uc

tu sequence of M operations starting from an empty tree will 
take a total of at most O (M log N) time. 
To prove this bound, we introduce an accounting function

D
at

p g
called the potential function. The potential function is not 
maintained by the algorithm. Rather it is merely an 
accounting device that aids in establishing the required 
ti b d It h i i t b i d i th lt f

By: S. Hassan Adelyar

time bound. Its choice is not obvious and is the result of a 
large amount of trial and error. See pages 624 – 630. 
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Bottom-up splay require two pass. This can be done 
either by maintaining parent references by storing the

A
lg

or
ith

m either by maintaining parent references, by storing the 
access path on a stack, or by using a clever trick to 
store the path using the available references in the 

re
s 

an
d 

A accessed nodes. 
Unfortunately, all of these methods require a substantial 

t f h d d t h dl i l

ta
 S

tr
uc

tu amount of overhead, and we must handle many special 
cases. This section describes a top-down splay tree that 
maintains the logarithmic amortized bound. The top-

D
at

maintains the logarithmic amortized bound. The top
down procedure is faster in practice and uses only 
constant extra space. It is the method recommended by 
th i t f l t

By: S. Hassan Adelyar

the inventors of splay tree.
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As we descend the tree in our search for some 
node X we must take the nodes that are on the

A
lg

or
ith

m node X, we must take the nodes that are on the 
access path and move them and their sub-trees
out of the way. We must also perform some tree 

re
s 

an
d 

A y p
rotations to guarantee the amortized time 
bound. At any point in the middle of the splay, 
th i t d X th t i th t f it

ta
 S

tr
uc

tu there is a current node X that is the root of its 
sub-tree; this is represented in the diagrams as 
the middle tree Tree L stores nodes that are less

D
at the middle tree. Tree L stores nodes that are less 

than X; similarly, tree R stores nodes that are 
larger than X. Initially, X is the root of T, and L

By: S. Hassan Adelyar

and R are empty. 
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Descending the tree two levels at a time, we encounter a 
pair of nodes Depending on whether these nodes are

A
lg

or
ith

m pair of nodes. Depending on whether these nodes are 
smaller than X or larger than X, they are placed in L or R 
along with sub-trees that are not on the access path to X. 

re
s 

an
d 

A Thus the current node on the search path is always the 
root of the middle tree.  When we finally reach X, we can 
then attach L and R to the bottom of the of the middle

ta
 S

tr
uc

tu then attach L and R to the bottom of the of the middle
tree. As a result, X will have been moved to the root. The 
issue then is how nodes are placed into L and R and how 

D
at

p
the reattachment is performed at the end. This is what the 
tree in figure 21.9 are illustrating. 
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Figure 21.9  Top-down splay rotations; zig(top), zig-zig 
( iddl ) d i (b )

By: S. Hassan Adelyar

(middle), and zig-zag (bottom)
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In all the pictures, X is the current node, Y is its child, 
and Z is a grandchild.

A
lg

or
ith

m

and Z is a grandchild.
If the rotation should be a zig, then the tree rooted at Y 
becomes the new root of the middle tree. X and sub-tree 
B tt h d l ft hild f th ll t it i R

re
s 

an
d 

A B are attached as a left child of the smallest item in R; 
X’s left child is logically made null. As a result, X is the 
new smallest element in R, thus making future attachment 

ta
 S

tr
uc

tu easy.
Notice carefully that Y does not have to be a leaf for the 
zig case to apply If the item sought is found in Y a zig

D
at zig case to apply. If the item sought is found in Y, a zig 

case will apply even if Y has children. A zig case also 
applies if the item sought is smaller than Y and Y has no 
l ft hild if Y h i ht hild d l f th

By: S. Hassan Adelyar

left child, even if Y has a right child, and also for the 
symmetric case.  
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A similar discussion applies to the zig-zig case. The crucial point is that a 
rotation between X and Y is performed. The zig-zag case brings the 
b tt d Z t th t f th iddl t d tt h b t X d

A
lg

or
ith

m bottom node Z to the top of the middle tree and attaches sub-trees X and 
Y to R and L, respectively. Note that Y is attached to, and then becomes, the 
largest item in L.
The zig-zag step can be simplified somewhat because no rotations are

re
s 

an
d 

A The zig-zag step can be simplified somewhat because no rotations are 
performed. Instead of making Z the root of the middle tree, we make Y the 
root. This is shown in figure 21.10. This simplifies the coding because the 
action for the zig-zag case becomes identical to the zig case. This would 

d t i t ti f h t f i ti i Th

ta
 S

tr
uc

tu seem advantages, since testing for a host of cases is time-consuming. The 
disadvantages is that a descent of only one level results in more iterations 
in the splaying procedure. 
Once we performed the final splaying step then L R and the middle tree

D
at Once we performed the final splaying step, then L, R, and the middle tree

are arranged to form a single tree, as shown in figure 21.11. Notice 
carefully that the result is different from that obtained with bottom-up
splaying. The crucial fact is that the O (log N) amortized bound is 

By: S. Hassan Adelyar

preserved.  
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Figure 21.10: Simplified top-down zig-zag
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Figure 21.11: Final arrangement for top-down splaying
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An example of the simplified top-down splaying
algorithm is shown in figure 21 12 We attempt to access

A
lg

or
ith

m algorithm is shown in figure 21.12. We attempt to access 
19 in the tree. The first step is a zig-zag. In accordance 
with a symmetric version of figure 21.10, we bring the 

re
s 

an
d 

A sub-tree rooted at 25 to the root of the middle tree and 
attach 12 and its left sub-tree to L. Next, we have a zig-
zig: 15 is elevated to the root of the middle tree and a

ta
 S

tr
uc

tu zig: 15 is elevated to the root of the middle tree, and a 
rotation between 20 and 25 is performed, with the 
resulting sub-tree being attached to R. The search for 19

D
at

g g
then results in a terminal zig. The middle’s new root is 18,
and 15 and its left sub-tree are attached as a right child
of L’s largest node The reassembly in accordance with

By: S. Hassan Adelyar

of L’s largest node. The reassembly, in accordance with 
figure 21.11, terminates the splay step. 
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Fi 21 12 S i d l ( i 19 i )
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Figure 21.12: Steps in a top-down splay (accessing 19 in top tree)


