

Splay Trees

Splay Trees

Splay Trees

- Support all of the BST operations but does not guarantee O (Log n) worst-case performance. Its bound is amortized, meaning, although individual operations can be expensive, any sequence of operations is guaranteed to be logarithmic.
- Because this is a weaker guarantee than that provided by balanced BST, only the data and two references per node are required for each item and the operations are somewhat simpler.

Splay Trees

- Although balanced BST provide logarithmic worst-case running-time per operation, they have several limitations:
\square Require storing an extra balancing information
- They are complicated to implement. As a result, insertions and deletions are expensive and potentially error-prone.
- We don't win when easy inputs occur.

Splay Trees

The performance of a balance BST is improvable. That is, there worst-case, average-case, and best-case performance are essentially identical.
An example is a find operation for some item X. It is reasonable to expect not only that the cost of the find will be logarithmic, but also that if we perform an immediate second find for \mathbf{X}, the second access will be cheaper than the first. In a red-black trees this is not true.
We would also expect that if we perform an access of \mathbf{X}, Y, and Z, then a second set of accesses for the same sequence would be easy.
90-10 rule.

Splay Trees

The 90-10 rule has been used for many years in disk I/O system.
A cache stores in main memory the contents of some of the disk blocks.
Browsers use the same idea: a cache stores locally the previously visited Web Pages.

Amortized Time Bounds

Splay Trees

There is, however, a reasonable compromise: $\mathrm{O}(\mathrm{N})$ time for a single access may be acceptable as long as it does not happen too often. In particular any \mathbf{M} operations take a total of \mathbf{O} (MLog N) worst-case time, then the fact that some operations are expensive might be inconsequential.

Splay Trees

When we can show a worst-case bound for a sequence of operations that is better than the corresponding bound obtained by considering each operation separately, the running time is said to be amortized.
Some single operations may take more than logarithmic time.
However, amortized bounds are not always acceptable. Specifically, if a single bad operation is too time-consuming, then we really need worst-case bounds rather than amortized bounds.

Splay Trees

- The easiest way to move an item toward the root is to rotate it continually with its parent until it becomes a root node.
- Then, if the item is accessed a second time, the second access is cheap.
Even if a few other operations intervene before the item is re-accessed, that item will remain close to the root and thus will be quickly found.
- This process is called rotate-to-root strategy.

Splay Trees

Dy: J. Hassan Adeıyar

Splay Trees

Future access to node 3 is cheaper. But node 4 and 5 each move down a level.
This means that if access patterns do not follow the $\mathbf{9 0 - 1 0}$ rule, it is possible for a long sequence of bad accesses to occur.

As a result, the rotate-to-root rule will not have logarithmic amortized behavior; this will be unacceptable.

Basic Bottom-up Splay

Splay Trees

- Achieving logarithmic amortized cost seems impossible because when we move an item to root via rotations, other items are pushed deeper.
- It means there would always be some very depth nodes, if no balancing information is maintained.
- There is a simple fix to the rotate-to-root strategy that allows the logarithmic amortized bound to be obtained. The resulting rotate-to-root strategy is called splaying.

By: S. Hassan Adelyar

Splay Trees

- Let \mathbf{X} be a non-root node on the access path on which we are rotating. If the parent of X is the root of the tree, we merely rotate \mathbf{X} and the root as shown in figure 21.4. This is the last rotation along the access path, and it places \mathbf{X} at the root.
This is a zig case.

Splay Trees

Figure 21.4 Zig case (Normal single rotation)

Splay Trees

Otherwise, \mathbf{X} has both a parent \mathbf{P} and a grandparent G, and there are two cases plus symmetries to consider.
Zig-zag case, which corresponds to the inside case for AVL trees. Here \mathbf{X} is a right child and \mathbf{P} is a left child (or vice versa). We perform a double rotation, exactly like an AVL double rotation, as shown in figure 21.5.

- In figure 21.1, the splay at node 3 is a single zigzag rotation.

Figure 21.5 Zig-zag case (some as a double rotation); the symmetric case has been omited.

Splay Trees

- Zig-zig case, which is the outside case for AVL trees. Here, \mathbf{X} and \mathbf{P} are either both left children or both right children. In this case, we transform the left-hand tree of figure 21.6 to the right-hand tree.
This zig-zig splay rotates between \mathbf{P} and \mathbf{G} and then X and P.

Figure 21.6 Zig-zig case (this is unique to the splay tree); the symmetric case has been omited

Figure 21.7 Result of splaying at node 1 (three zig-zigs and a zig)

Splay Trees

- Splaying not only moves the accessed node to the root. It also roughly halves the depth of most nodes on the access path.

Splay Trees

Figure 21.8 The remove operation applied to node 6: first 6 is splayed to the root, thus leaving two sub-trees; a findMax on the left sub-tree is performed, raising 5 to the root of the left sub-tree; then the right sub-tree can be attached (not shown)

Analysis of Bottom-up Splaying

Splay Trees

The analysis of splay tree algorithm is complicated because each splay vary from a few rotations to $\mathbf{O}(\mathrm{N})$ rotations. Furthermore, unlike with balanced search trees, each splay changes the structure of the tree. This section proves that the amortized cost of a splay is at most 3log $\mathrm{N}+1$ single rotations. The splay tree's amortized bound guarantees that any sequence of \mathbf{M} splays will use at most 3Mlog N+M tree rotations, and consequently any sequence of M operations starting from an empty tree will take a total of at most $\mathbf{O}(\mathbf{M} \log \mathbf{N})$ time.
To prove this bound, we introduce an accounting function called the potential function. The potential function is not maintained by the algorithm. Rather it is merely an accounting device that aids in establishing the required time bound. Its choice is not obvious and is the result of a large amount of trial and error. See pages 624-630.

Top-down Splay Trees

Splay Trees

- Bottom-up splay require two pass. This can be done either by maintaining parent references, by storing the access path on a stack, or by using a clever trick to store the path using the available references in the accessed nodes.
- Unfortunately, all of these methods require a substantial amount of overhead, and we must handle many special cases. This section describes a top-down splay tree that maintains the logarithmic amortized bound. The topdown procedure is faster in practice and uses only constant extra space. It is the method recommended by the inventors of splay tree.

Splay Trees

- As we descend the tree in our search for some node X, we must take the nodes that are on the access path and move them and their sub-trees out of the way. We must also perform some tree rotations to guarantee the amortized time bound. At any point in the middle of the splay, there is a current node X that is the root of its sub-tree; this is represented in the diagrams as the middle tree. Tree L stores nodes that are less than X; similarly, tree \mathbf{R} stores nodes that are larger than \mathbf{X}. Initially, \mathbf{X} is the root of \mathbf{T}, and \mathbf{L} and \mathbf{R} are empty.

Splay Trees

- Descending the tree two levels at a time, we encounter a pair of nodes. Depending on whether these nodes are smaller than X or larger than X, they are placed in L or \mathbf{R} along with sub-trees that are not on the access path to \mathbf{X}. Thus the current node on the search path is always the root of the middle tree. When we finally reach X , we can then attach L and \mathbf{R} to the bottom of the of the middle tree. As a result, \mathbf{X} will have been moved to the root. The issue then is how nodes are placed into \mathbf{L} and \mathbf{R} and how the reattachment is performed at the end. This is what the tree in figure 21.9 are illustrating.

Data Structures and Algorithms

Figure 21.9 continue ${ }_{\text {b }}$ (see next page)

Figure 21.9 Top-down splay rotations; zig(top), zig-zig (middle), and zig-zag (bottom)

Splay Trees

- In all the pictures, X is the current node, Y is its child, and \mathbf{Z} is a grandchild.
- If the rotation should be a zig, then the tree rooted at Y becomes the new root of the middle tree. X and sub-tree \mathbf{B} are attached as a left child of the smallest item in \mathbf{R}; X's left child is logically made null. As a result, \mathbf{X} is the new smallest element in \mathbf{R}, thus making future attachment easy.
- Notice carefully that \mathbf{Y} does not have to be a leaf for the zig case to apply. If the item sought is found in \mathbf{Y}, a zig case will apply even if Y has children. A zig case also applies if the item sought is smaller than \mathbf{Y} and \mathbf{Y} has no left child, even if \mathbf{Y} has a right child, and also for the symmetric case.

Splay Trees

- A similar discussion applies to the zig-zig case. The crucial point is that a rotation between X and Y is performed. The zig-zag case brings the bottom node Z to the top of the middle tree and attaches sub-trees X and \mathbf{Y} to \mathbf{R} and \mathbf{L}, respectively. Note that \mathbf{Y} is attached to, and then becomes, the largest item in \mathbf{L}.
- The zig-zag step can be simplified somewhat because no rotations are performed. Instead of making Z the root of the middle tree, we make Y the root. This is shown in figure 21.10. This simplifies the coding because the action for the zig-zag case becomes identical to the zig case. This would seem advantages, since testing for a host of cases is time-consuming. The disadvantages is that a descent of only one level results in more iterations in the splaying procedure.
- Once we performed the final splaying step, then L, R, and the middle tree are arranged to form a single tree, as shown in figure 21.11. Notice carefully that the result is different from that obtained with bottom-up splaying. The crucial fact is that the $\mathbf{O}(\log \mathbf{N})$ amortized bound is preserved.

Figure 21.10: Simplified top-down zig-zag

Figure 21.11: Final arrangement for top-down splaying-

Splay Trees

- An example of the simplified top-down splaying algorithm is shown in figure 21.12. We attempt to access 19 in the tree. The first step is a zig-zag. In accordance with a symmetric version of figure 21.10, we bring the sub-tree rooted at 25 to the root of the middle tree and attach 12 and its left sub-tree to L. Next, we have a zigzig: $\mathbf{1 5}$ is elevated to the root of the middle tree, and a rotation between 20 and $\mathbf{2 5}$ is performed, with the resulting sub-tree being attached to \mathbf{R}. The search for 19 then results in a terminal zig. The middle's new root is 18, and 15 and its left sub-tree are attached as a right child of L's largest node. The reassembly, in accordance with figure 21.11, terminates the splay step.

By: S. Hassan Adelyar

Figure 21.12: Steps in a top-down splay (accessing 19 in top tree)

