
15 July, 2010
1 Huffman Trees

Heaps
The Huffman Code:

go
rit

hm
s Huffman algorithm uses a binary tree to compress

data. It is called the Huffman code, after David
H ff h di d it i 1952 D t

ur
es

 &
 A

l Huffman who discovered it in 1952. Data
compression is important in many situations. An
example is sending data over the Internet where

at
a

St
ru

ct example is sending data over the Internet, where
especially over a dial-up connection, transmission
can take a long timeD

a can take a long time.

By: S. Hassan Adelyar

15 July, 2010
2

Heaps
Character Codes:
Each character in a normal uncompressed text file is represented in

go
rit

hm
s p p

computer by one byte (for the ASCII Code) or by two bytes (for
Unicode). In these schemes, every character requires the same
number of bits.

ur
es

 &
 A

l There are several approaches to compressing data. For text, the
most common approach is to reduce the number of bits that
represent the most-used characters. In this approach we must be
careful that no character is represented by the same bit combination

at
a

St
ru

ct careful that no character is represented by the same bit combination
that appears at the beginning of a longer code used for some other
character. For example, if E is 01, and X is 01011000, then anyone
decoding 01011000 would not know if the initial 01 represented an E

D
a g p

or the beginning of an X. This leads to a rule: No code can be the
prefix of any other code.

By: S. Hassan Adelyar

15 July, 2010
3

Heaps
For each message, we make up a new code tailored to that
particular message. Suppose we want to send the message SUSIE
SAYS IT IS EASY The letter S appears a lot and so does the

go
rit

hm
s SAYS IT IS EASY. The letter S appears a lot, and so does the

space character. We might want to make up a table showing how
many times each letter appears. This is called a frequency table:
Character Count

ur
es

 &
 A

l

A 2
E 2
I 3

at
a

St
ru

ct S 6
T 1
U 1

D
a Y 2

Space 4
Linefeed 1

By: S. Hassan Adelyar

15 July, 2010
4

Heaps
The characters with the highest counts should be coded with a small
number of bits. The following table shows how we might encode the
characters in the above message:

go
rit

hm
s characters in the above message:

Character Code
A 010
E 1111

ur
es

 &
 A

l I 110
S 10
T 0110
U 01111

at
a

St
ru

ct U 01111
Y 1110
Space 00
Linefeed 01110

D
a

Thus, the entire message is coded as:
10 01111 10 110 1111 00 10 010 1110 10 00 110 0110 00 110 10 00
1111 010 10 1110 01110

By: S. Hassan Adelyar

15 July, 2010
5

Heaps
For sanity reasons we show this message
b k i t th d f i di id l h t

go
rit

hm
s broken into the codes for individual characters.

Of course, in reality all the bits would run
together; there is no space character in a binary

ur
es

 &
 A

l together; there is no space character in a binary
message, only 0s and 1s.
The following figure shows the Huffman Tree

at
a

St
ru

ct The following figure shows the Huffman Tree
for the above message:

D
a

By: S. Hassan Adelyar

15 July, 2010
6

Heaps

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

15 July, 2010
7

Heaps
Example-2:

go
rit

hm
s Let us assume an alphabet containing the

letters "a", "b", "c", "d" and "e" which are the
f l h i th f ll i t bl

ur
es

 &
 A

l names of leaves shown in the following table,
with their corresponding frequencies:

at
a

St
ru

ct
D

a

By: S. Hassan Adelyar

15 July, 2010
8

Heaps

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

15 July, 2010
9

Heaps

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

15 July, 2010
10

Heaps
Properties of Huffman trees
Huffman trees have the following properties:
E i t l d h 2 hild

go
rit

hm
s Every internal node has 2 children.

Smaller frequencies are further away from the root.
The 2 smallest frequencies are siblings.
Decoding with the Huffman Tree:

ur
es

 &
 A

l Decoding with the Huffman Tree:
Suppose we received the string of bits shown in the preceding section.
How would we transform it back into characters? We can use a kind of
binary tree called a Huffman tree.
The characters in the message appear in the tree as leaf nodes The

at
a

St
ru

ct The characters in the message appear in the tree as leaf nodes. The
higher their frequency in the message, the higher up they appear in the
tree. The number outside each node is the frequency. The numbers
outside non-leaf nodes are the sums of the frequencies of their children.
For each character you start at the root If you see a 0 bit you go left to the

D
a For each character you start at the root. If you see a 0 bit, you go left to the

next node, and if you see a 1 bit, you go to right. Try it with the code for A,
which is 010. You go left, then right, then left again, and you find the A
node.

By: S. Hassan Adelyar

15 July, 2010
11

Heaps
Creating the Huffman Tree:
Here is the algorithm for constructing the tree:
Make a node object (as seen in tree) for each character used in the message For

go
rit

hm
s Make a node object (as seen in tree) for each character used in the message. For

the message in the example, we will have nine nodes. Each node has two data
items: the character and that character’s frequency in the message.
Make a tree object for each of these nodes. The node become the root of the tree.
Insert these trees in a priority queue. They are ordered by frequency, with the

ur
es

 &
 A

l Insert these trees in a priority queue. They are ordered by frequency, with the
smallest frequency having the highest priority.
Now do the following:
1- Remove two trees from the priority queue, and make them into children of a new
node. The new node has a frequency that is the sum of the children’s frequencies;

at
a

St
ru

ct

q y q
its character field can be left blank.
2- Insert this new three-node tree back into the priority queue.
3- Keep repeating steps 1 and 2. The trees will get larger and larger, and there will
be fewer and fewer of them. When there is only one tree left in the queue, it is the
H ff t d dD

a Huffman tree and you are done.
The following figures show how the Huffman tree is constructed from the example
message:

By: S. Hassan Adelyar

15 July, 2010
12

Heaps

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

15 July, 2010
13

Heaps

go
rit

hm
s

ur
es

 &
 A

l
at

a
St

ru
ct

D
a

By: S. Hassan Adelyar

15 July, 2010
14

Heaps
Coding the Message:
Now that we have the Huffman tree, how do we code a message?
W t t b ti d t bl hi h li t th H ff d

go
rit

hm
s We start by creating a code table, which lists the Huffman code

alongside each character. To simplify the discussion, let us assume
that, instead of the ASCII code, our computer uses a simplified
alphabet that has only uppercase letters with 28 characters. A is 0,

ur
es

 &
 A

l B is 1, and so on up to z, which is 25. A space is 26, and a linefeed
is 27. We number these characters so their numerical code run from
0 to 27. Our code table would be an array of 28 cells. The index of
each cell would be the Huffman code for the corresponding

at
a

St
ru

ct

p g
character. Not every cell contains a code; only those that appear in
the message. The following table shows the table for the example
message.
Such a code table makes it easy to generate the coded messageD

a Such a code table makes it easy to generate the coded message.
For each character in the original message, we use its code as an
index into the code table.

By: S. Hassan Adelyar

15 July, 2010
15

Heaps
Creating the Huffman Code:
How do we create the Huffman code to put into the code table? The

go
rit

hm
s p

process is like decoding a message. We start at the root of the
Huffman tree and follow every possible path to a leaf node. As we
go along the path, we remember the sequence of left and right
choices recording a 0 for a left edge and a 1 for a right edge When

ur
es

 &
 A

l choices, recording a 0 for a left edge and a 1 for a right edge. When
we arrive at the leaf node for a character, the sequence of 0s and 1s
is the Huffman code for that character. We put this code into the
code table at the appropriate index number. This process can be

at
a

St
ru

ct

code table at the appropriate index number. This process can be
handled by calling a method that starts at the root and then calls
itself recursively for each child. Eventually, the paths to all the leaf
nodes will be explored and the code table will be completed.

D
a

By: S. Hassan Adelyar

