يوهنتون كابل پوهنجی کمپیوترساینس Introduction to Database and Data Models Lechnres (0) (3) (0) (0)ΔĻ تهیه کننده : پوهنیار محمد شعیب "زرین خیل" 1389 : سال

Introduction to Database and Data Models

03 By: M Shuaib Zarinkhail 2010

Why Databases?

- Purpose: to help people/businesses keep track of (store & access) information
- Used by large and small businesses, and individuals to:
 - Track business information
 - Used across by networks, Internet
 - Store texts, graphics, images, sounds, videos
 - Can be paper based or computer based

Why Databases? Cont ...

- Software: Database Management System (DBMS)
- Single-user
 - One person accesses database at a time
- Multi-user
 - Data and sources are shared between many people (users)
 - More complicated

Database System

Def: A computerized record-keeping system

- A repository or container for a collection of computerized data files
- A system that stores information and allows users to retrieve and update that information on demand

Supports Operations

- Add or delete files to & from the database
- Insert, retrieve, remove, or change data (records) in a file/database

Database System

Consists of:

- Database
- DBMS (Database Management System)
- Database Applications (Application Programs)
 - Some people include this part to the DBMS
- Users

Database System Components

Database Definition

- Def: A self-describing collection of integrated data records and related tables
- Self-describing contains both:
 - metadata (a description of its own internal structure)
 - userdata

Database Definition Cont ...

- Integrated Data Records: databases contains multiple files
- Userdata
- Metadata
- Indexes
- Application metadata

Userdata

- Data files or tables
 - Typically stored as "RELATIONS" or tables of data
 - Uses a process called NORMALIZATION
- Rows
 - Records for entities that describe some business, etc
- Columns
 - Fields or attributes that describe the entities

Metadata

- The internal database structure description, or data dictionary
- Usually stored in tables
 - Called SYSTEM TABLES
- Tables include:
 - List of tables
 - List of columns in tables
 - Indexes, keys, rules, etc

Example Metadata

Indexes

- Stores the relationships among data items
- Improves the performance and accessibility
- Improves processing speed
- Used for:
 - Sorting
 - Quick access to data (accelerate searches)

Application Metadata

- Store application components such as:
 - User forms Reports
 - Queries etc
- Not all DBMSs support
- Of those that do support, not all store in the database
 - Typically accessed via DBMS tools not directly

DBMS

Def: A set of programs used to define, create and manipulate a database

- Features and functions vary
- Three main subsystems: NEXT SLIDE

DMBS (Subsystems)

- 1) **Design-Tools**: Software that are used to create tables, forms, queries, and reports
 - Provides interfaces for built-in programming languages
- 2) **Run-Time**: Processes the components created (i.e. Web Design Tools)
 - Executes & displays data in forms, & provides access for standard programming languages (C++, etc.)

DBMS (subsystems) Cont.

- 3) DBMS engine: Software between previous 2 and actual files of userdata that:
 - Handles requests to access the database tables
 - Does transaction management, record locking, backup & recovery, etc

DBMS Examples

Tens of DBMSs exist

- MS-Access (Microsoft)
- SQL-Server (Microso
- Oracle
- DB2

(Microsoft) (Oracle (IBM)

Importance of DBMS

- Makes data management more efficient and effective
- Allows quick answers to *ad-hoc* queries
- Provides better access to managed data
- Promotes integrated view of operations
- Reduces the probability of inconsistent data

DBMS Functions

- 1. Metadata Management
- 2. Userdata Management
- 3. Database Creation
- 4. Table Creation
- 5. Indexes and other overhead data Creation
- 6. Data Reading

DBMS Functions

- 7. Data Editing
- 8. Data Maintenance
- 9. Data Implementation
- 10. Concurrency Control
- 11. Security
- 12. Backup and Recovery

Metadata Management

- Entering data to metadata or to Data Dictionary
- Editing metadata
- Finding data through database
- Using data from a database

Metadata Management

- Creating complicated structures to store data
- Stores different kinds of data as:
 - Screen definitions
 - Report definitions
 - Data validation
 - Audio / Video file formats

Userdata Management

- Add data to a database
- Retrieve data from a database
- Update data in a database
- Remove data from a database

Database Creation

- A database can be created from:
 - Scratch
 - Existing databases
 - Computerized data
 - Paper based data files

Table Creation

- Tables can be created from:
 - Data by users
 - Data from other databases
 - Data from other tables
 - Data from queries
 - Data from text files

Indexes and other overhead data Creation

- Existed data could be indexed for:
 - Sorting data in a database
 - Finding needed data from a database
 - Finding indexed data from a database
 - Narrowing a huge database source for results

Data Reading & Data Editing

- Reading data from a database
- Querying data from a database
 - Using Structured Query Language (SQL)
- Retrieving needed information from a database
- Edit data in a database
- Updated data in a database

Data Maintenance

- Data maintaining in a database
 - Metadata
 - Userdata
- Format maintaining and updating in a database
 - Tables
 - Other internal structures

Data Implementation

- Implement methods
- Implement rules
 - Standard rules
 - Business rules
- Implement RIC
 - What is RIC? Referential Integrity Constraint

Concurrency Control

Database Administration Section

- Transaction manager or TP monitor must enforce certain recovery and concurrency controls
- Controls concurrency in:
 - Single-user databases (sometimes)
 - Multi-user databases (always)

Security

Database Administration Section

- Controls security
 - One section users could access only that section's data
 - While database managers could access almost all data in a database

Backup and Recovery

Database Administration Section

- In many cases databases are much important and huge (i.e. amazon.com)
- Not trust on hardware and software
- DBMSs should create backups and recover data

Introduction to Database and Data Models

04 By: M Shuaib Zarinkhail 2010

Application Programs

- Subprograms in DBMSs
- A layer between users and DBMS
- Read and execute SQL commands ordered by users
- Developed by:
 - Software development companies
 - Database developers / designers
 - Database users (sometimes)

Application Program Functions

- 1. Form Creation and Process
- 2. Query Implementation
- 3. Report Creation and Process
- 4. Logic Application Implementation
- 5. Application Control

Form Creation and Process

An application program in MS-Access:

- Creates a form Processes a form
- User friendly functions in front-end
- SQL commands in back-end for:
 - Entering data Editing data
 - Retrieving data
 Removing data
- Does not show codes

Example of a Form in Access

CustomerNan	e Ariel Joł	nnson		
Phone	206.555	206.555.1234		
Course Enroll	Course	CourseDate	Fee	AmountPaid
Adv Pa	stels	10/1/2003	\$500.00	\$250.
Int Past	els	3/15/2003	\$350.00	\$350.
*				

Query Implementation

Application programs can:

- Create a query which is sent by user to the DBMS
- DBMS responds and shows the result(s) of the requested query on screen or on a front-end interface

Example of a Query in Access

Enter Parameter Value 🛛 🔋 🔀					
Enter part of co	ourse na	me:			
pas					
0		Car	icel		

đ	📴 CourseParameterQuery1 : Select Query 📃 🗖 🔀						
	CustomerName	Course	CourseDate	Fee	AmountPaid		
►	Ariel Johnson	Adv Pastels	10/1/2003	\$500.00	\$250.00		
	Ariel Johnson	Int Pastels	3/15/2003	\$350.00	\$350.00		
	Charles Jackson	Adv Pastels	10/1/2003	\$500.00	\$500.00		
	Jeffrey Pearson	Adv Pastels	10/1/2003	\$500.00	\$500.00		
	Leah Kyle	Adv Pastels	11/15/2003	\$500.00	\$250.00		
*							
Re	Record: 1 1 1 1 1 1 5 6 5						

(SQL code) from previews example

SELECT CUSTOMER.CustomerName, COURSE.Course, COURSE.CourseDate, COURSE.Fee, ENROLLMENT.AmountPaid

FROM CUSTOMER INNER JOIN (COURSE INNER JOIN ENROLLMENT ON COURSE.CourseNumber = ENROLLMENT.CourseNumber) ON CUSTOMER.CustomerNumber = ENROLLMENT.CustomerNumber

WHERE (((COURSE.course) Like "*" & [Enter part of course name:] & "*"))

ORDER BY CUSTOMER.CustomerName;

Report Creation and Process

- Similar to previous task (Query Impl...)
- First creates the query for the ordered command
- Then exports the results in a report format

Example of a Report in Access

Course Enrollment Report

Course	CourseDate	Fee	CustomerName	AmountPaid	Phone
Adv Pastels	10/1/2003	\$500.00	Ariel Johnson	\$250.00	206.555.1234
Int Pastels	3/15/2003	\$350.00	Ariel Johnson	\$350.00	206.555.1234
Adv Pastels	10/1/2003	\$500.00	Charles Jackson	\$500.00	306.555.1488
Adv Pastels	10/1/2003	\$500.00	Jeffrey Pearson	\$500.00	212.555.8878
Adv Pastels	11/15/2003	\$500.00	Leah Kyle	\$250.00	444.555.3833

Logic Application Implementation

- Very important task of Application Programs
- Stops errors during applications
- Creates error messages while occurs
 - i.e. A store with less materials than ordered by a customer

Application Control

Control Application Program commands

- Controls and shows active and possible commands in a list to users
- Controls data by DBMS support

• How to change? All data or a part of it

Divided into three categories:

- 1. Database Administrators (DBAs)
- 2. Application Programmers (Developers)
- 3. End Users (Users)

Database Administrators (DBA)

- They are responsible for the overall control and manage of database systems
- DBA has the central responsibility for the data
- The one who understand the enterprise data and the needs of the enterprise with respect to that data at a *senior management level*

DBA Jobs 1

- Define the logical schema
- Define the physical schema
- Define security and integrity constraints
- Define backup/recovery policies
- Assist users:
 - provide technical education
 - analyze the information requirements of users
 - consult application design
 - balance conflicting user requirements

DBA Jobs 2

- Monitor performance and respond to changing requirements
 - Decide what data should be stored in DB in first place
 - Establish policies for maintaining and dealing with that data once it has been stored
 - Example: who can perform what operations on what data in what circumstances
- DBA is a manager, not only a technician

Application Programmers

- The technical person responsible for implementing the Database Administrator's and/or other users' decisions
- Should have enough programming skills
- Responsible for writing Database Applications Programs in general programming languages
 - Host language: C++, Visual Basic, C#, Java, COBOL, PL1, ...
 - Embedded language: the language used to send DML to a DBMS

Application Programmer-Jobs1

- Create the actual database
- Put in place the technical controls needed to enforce the various policy decisions made by the DBA
- Ensure that the system operates with adequate performance
- Provide a variety of other technical services

Application Programmer-Jobs2

- Liaising with users
- Defining security and integrity constraints
- Defining dump/restore schemas or unload/reload utilities
- Monitoring performance and responding to changing requirements

End Users

- Are general users of databases
- Do not need to know fundamentals of databases
- End users can use DBs in two ways:
 - 1. Directly via DBMSs
 - 2. Connected to an interface
 - Web-based
 - Designed by high level languages (VB, C#, ...)

End Users

- End user requests have two types
 - 1. ad-hoc (unplanned): use a program with which a user directly send DML command to DBMS
 - This category uses DBMS
 - canned (planned): use an easy-to-use program which was already developed by application programmers
 - This category uses client-server or (online DBs)