
پوهنتون کابل

پوهنحی کمپیوترساینس

Introduction to Database and Data Models

تهيه کننده : پوهنيار محمد شعيب "زرين خيل" سال : 1389

Introduction to Database and Data Models - Relational Model

05 By: M Shuaib Zarinkhail 2010

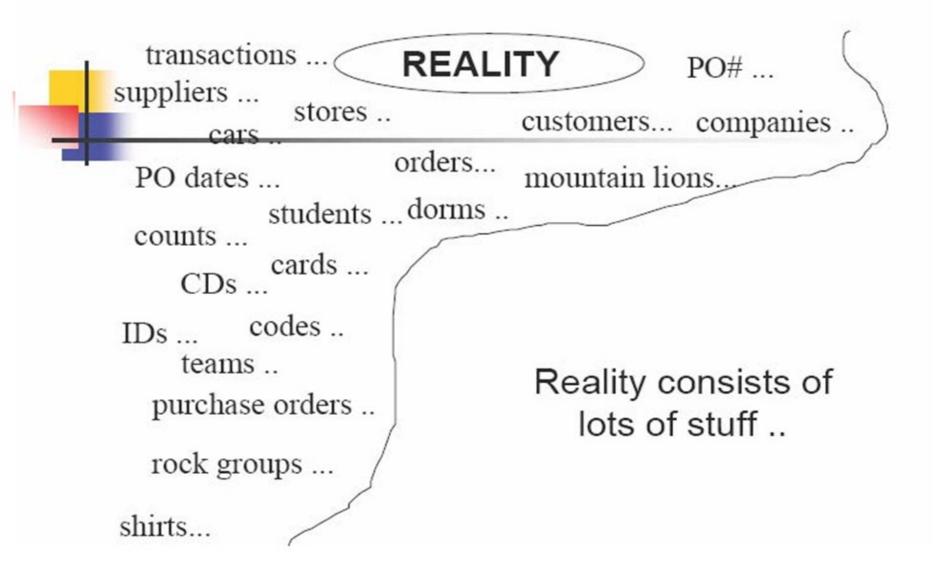
Database As a Model

- A database is a model
- Not a model of some actual business reality!
- Rather, it is a model of the user's 'MODEL' of that reality
 - i.e.a representation of a view of reality that allows the user to keep track of important information

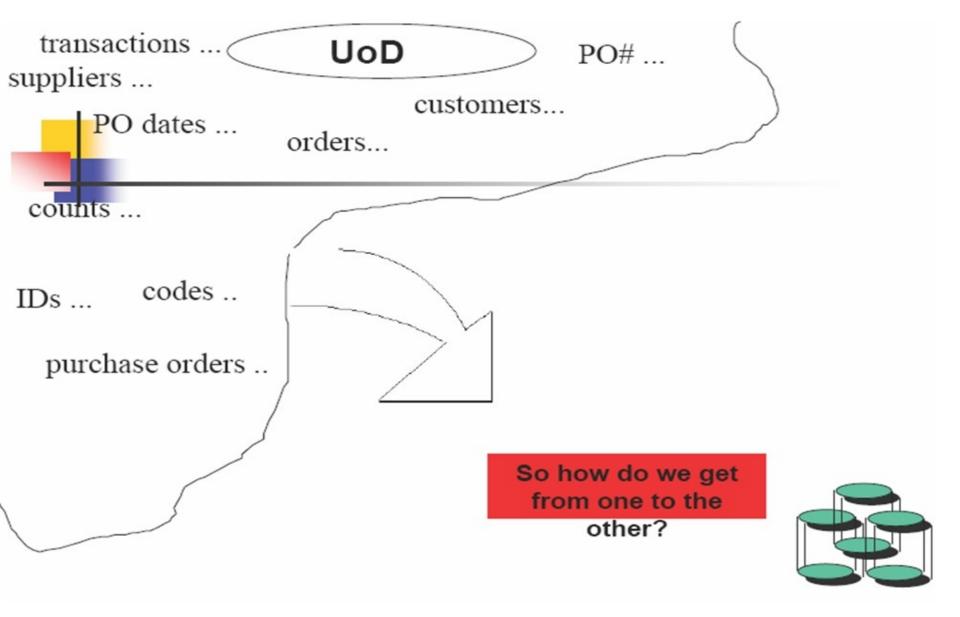
Database As a Model

- The amount of detail in the model depends on the level of information required
 - This is a critical part of defining a database
- Must be dynamic
 - Support changes

DB Creation -Summary of Steps

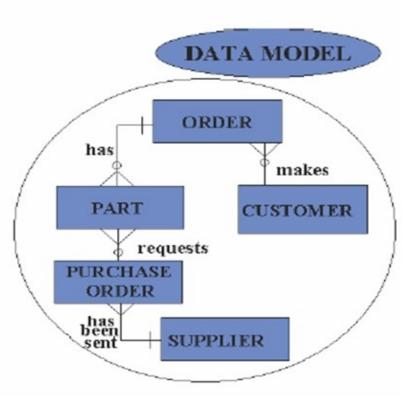

- 1. Create a Data Model
- 2. Transpose model into normalized relations
- 3. Create the database Tables
- 4. Define relationships between tables
- 5. Define component applications (metadata)
 - Forms, queries, reports, menus and / or application programs

- Create a Data Model:
 - Identify the Universe of Discourse (UoD) of a field or subject
- Definitions: UoD = the subset of model of reality that we are interested in implementing in a database

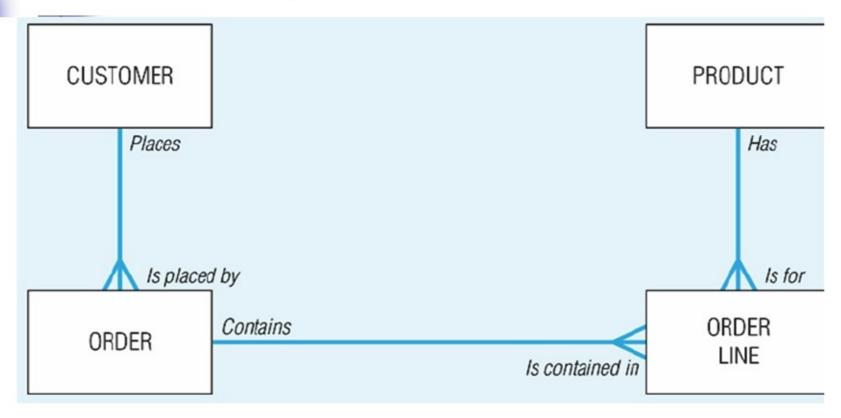

- A Model may consists of:
 - Entity Classes
 Object Classes
 - Attributes of properties
 - Domains
 - Relationships
 - Business Rules
- As UoD changes, change Data Model to reflect new reality

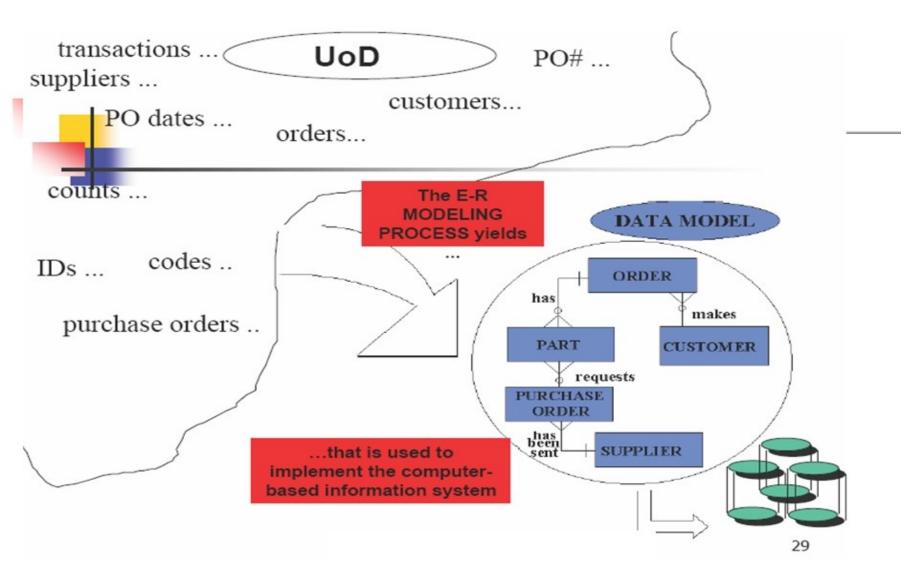
Data Modeling

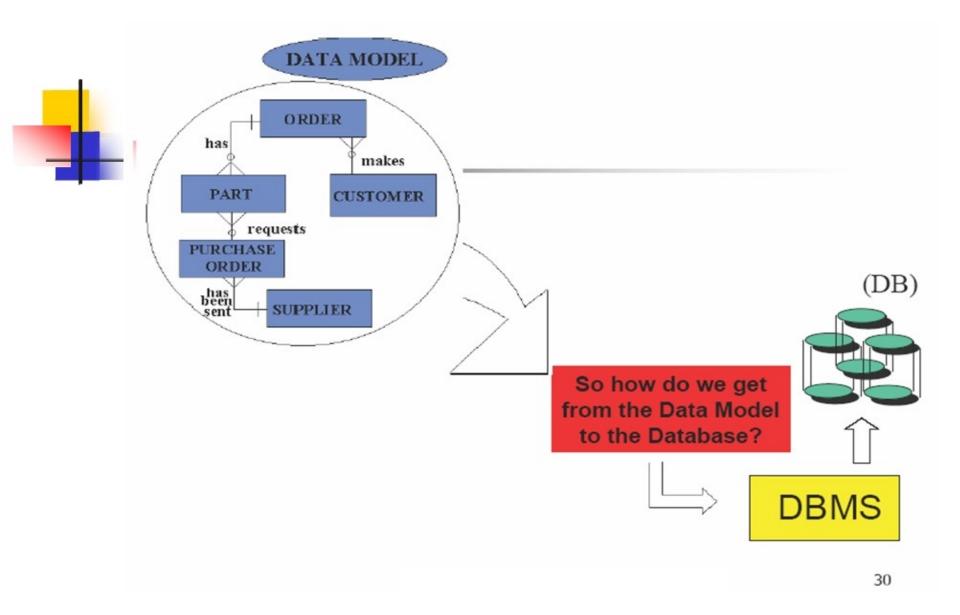
- The process of determining what items are of importance to the:
 - Users
 - Relationships between items
 - Rules that users need to be in forced
 - Creating a Data Model to represent all them

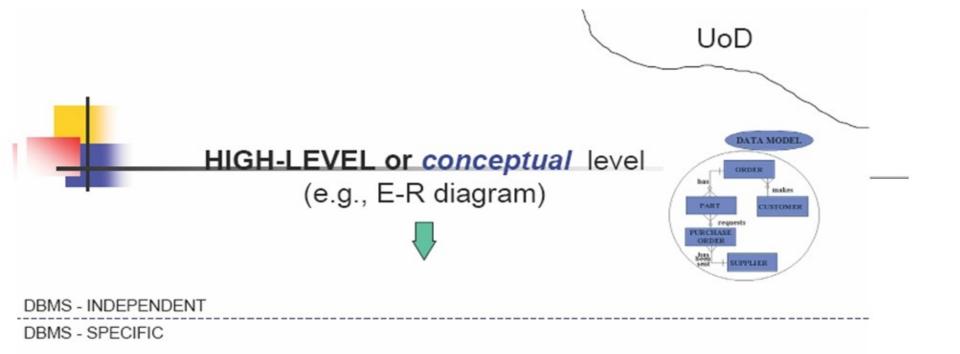


transactions suppliers PO dates	UoD PO# customers orders	
counts IDs codes purchase orders	A Universe of Discourse (UoD) is some subset of that stuff that we are interested in representing with a computer-based information system (usually a DBMS).	
	As our UoD changes, we want to modify the computer- based information system to reflect those changes	

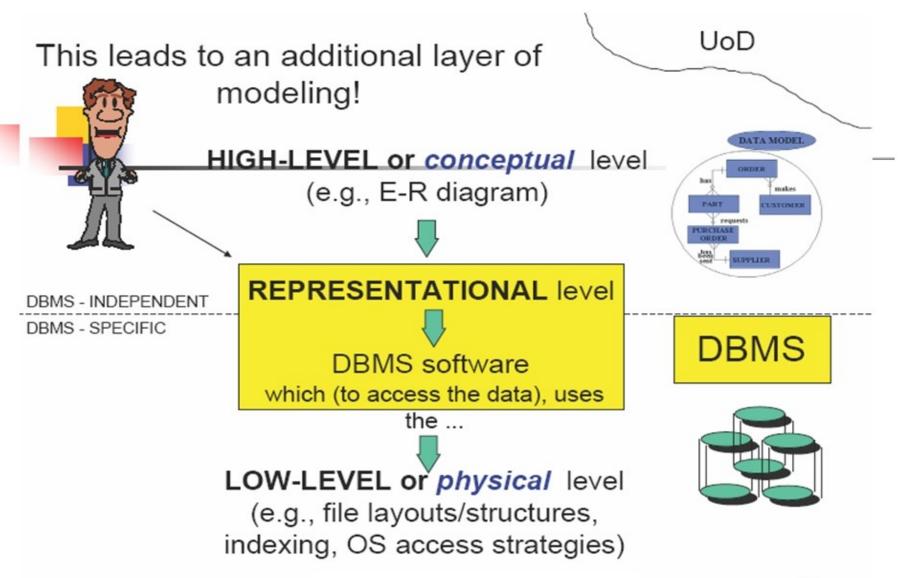



We begin with a .. DATA MODEL


" A data model is a set of concepts that <u>can be used to</u> <u>capture a UoD</u> which in turn can be used to implement a computer-based information system.



A segment from enterprise data model



LOW-LEVEL or physical level (e.g., file layouts/structures, indexing, OS access strategies)

31

32

- Transpose the model into a set of relations
- Then form the schema that have to be implemented
 - Def Schema: the design for a database, including its tables, relationships, domains and constraints, that is used as the foundation for creating a database and its applications

Syntax:

- TableName (list of column data items)
 - Identifiers
- Relationship lines and possibly names
 - Including relationship types
- Different data model techniques
 - Hierarchical, network, relational, etc
- Apply Normalization rules to eliminate data anomalies

- Change data model relations to database tables
 - This should be based on the schema or data model already explained in step #2
- Name tables for identity within a database file
- Name columns for identity within a table
 - Table names in a database and column names in a table should not duplicate

- Set data type for each column
 - This is important for data quality
 - This required for relationships
- For relationships between two tables "RIC" should perform
 - In RIC, domain of two fields (the index field from parent table, and the foreign key field from child table should use the same data types and domains)

- Define relationships between database tables
 - This can be done during step #3 of creating DB
- Define relationship rules (optional)
 - i.e. on delete / on update (cascade, no action, ...)
 - Implement business rules (if any)

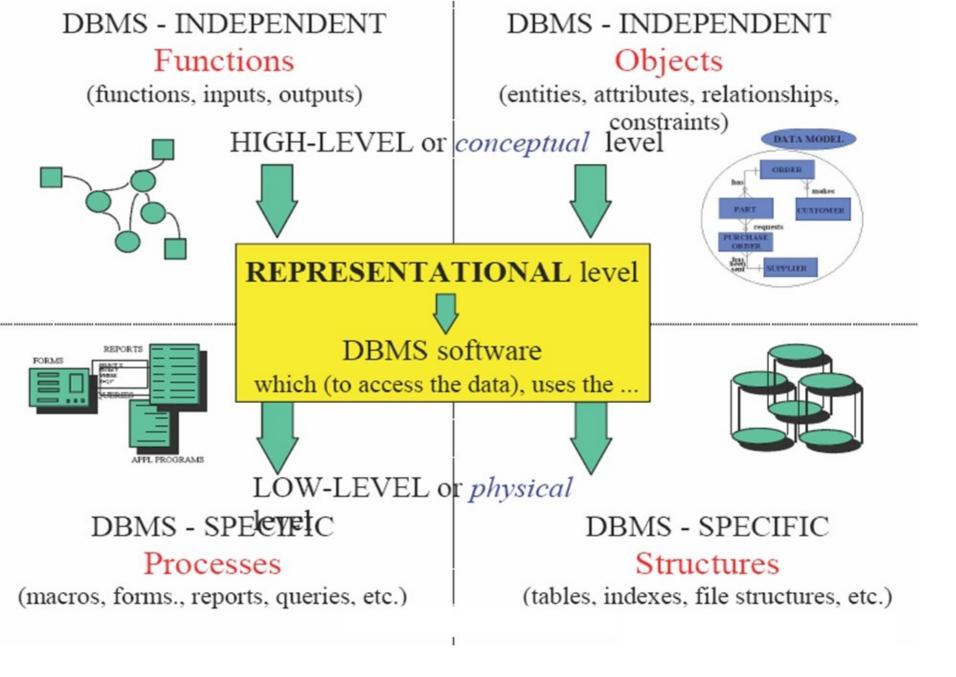
- Define the Application Metadata Components
- Forms
 - Data display that typically show one record
 - Usually on screen in a window
 - All or selected fields of a record are displayed
 - Usually allow updating

- Define the Application Metadata Components
- Queries
 - Views of retrieved data that answers a question
 - Can be done by
 - Structured Query Language (SQL)
 - Query by Example (QBE)
 - Query by Form (QBF)

- Structured Query Language (SQL)
 - Standard query language
 - Uses by most of DBMSs
- Query by Example (QBE)
 - Use DBMS tools to identify tables, relationships and data items to be analyzed
- Query by Form (QBF)
 - Queries done by entering search constraints

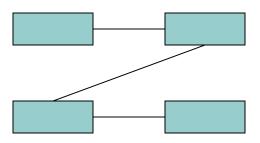
- Define the Application Metadata Components
- Reports
 - Neatly organizes and summarizes data in a DB
 - Can be based on a query, view, or a table
 - Data can be summarized in sections
 - Typically meant to be printed, also good for display

- Define the Application Metadata Components
- Menus
 - Allow DB developers to tailor application ot a specific user
 - Control access to application components
 - Make applications easier to use by displaying options and helping users to choose actions


- Define the Application Metadata Components
- Application Programs
 - Special data retrieval or update software that are written in either
 - A built-in languages (i.e. MS Access has Macro Language and VBA)
 - A standard programming language that interfaces DBMS

Maintenance

- After a database has been created, it then must be maintained
- For this purpose, the followings are needed
 - Trained personnel
 - Updated software
 - Capable hardware
 - Enough storage media


Introduction to Database and Data Models - Relational Model

06 By: M Shuaib Zarinkhail 2010

Hierarchical and Network Models

- Hierarchical Model
 - Very limited
 - Very slow
- Network Model
 - Less restrictive than hierarchical model

Relational Model

- First proposed by Dr E F Codd in 1970s
- Then finalized in 1985, applicable up to date
- Applied Relational Algebra to the problem of managing and accessing large amounts of data

Relational Model

- New design intended to eliminate problems with databases
- Especially, Large Institutional Databases, accessible only via complicated programs and file systems
- Not responsive to user needs

Relational Model – Design Features

- Data stores as rows and columns in tables
- Values in row / columns use to relate / link rows across tables
- Provides a visualization of relationships
- Keeps data item duplication between tables to a minimum
- Uses a formal process called Normalization to setup optimum tables

Relational Model

GOAL:

Simplicity

- Allow end users to access databases directly and simply
- By process, it is too difficult, but professional can easily develop and access for them

The Relational Model Cont...

- In 1985 Dr. Codd finalized 13 (12 + 1) rules for relational model
- These rules are still being used for relational databases

Details of those rules are in coming slides

DB management

 A relational DBMS must be able to manage database entirely through its relational capabilities

Information rule

 All information is represented explicitly as a value in tabular format

Guaranteed access

- Every value in a relational database is guaranteed to be accessible by using a combination of
 - table name, column name, primary key value (Index)

Systematic null value support

- The DBMS provides systematic support for the treatment of *null values*
 - distinct from default values
 - independent of any domain

Null Value: unknown or inapplicable data

1. Active, online relational catalog

- The description of the database and its contents is represented at the logical level in tabular format
- and can therefore be queried using the database language

Comprehensive data sublanguage

- At least one supported language must have a well-defined syntax and be comprehensive
 - It must support
 - data definition manipulation

 - transactions
- integrity rules authorization

View updating rule

- All views that are theoretically updatable can be updated through the system
- Set-level insertion, update, and deletion
 - Supports not only set-level retrievals but also set-level inserts, updates, and deletes

Physical data independence

- Application programs and ad hoc programs are logically unaffected when
- physical access methods or storage structures are altered

Logical data independence

Application programs and ad hoc programs are logically unaffected, to the extent possible when

• changes are made to the table structures

Integrity independence

- The database language must be capable of defining integrity rules
- These rules must be stored in the online catalog, and they cannot be bypassed

Distribution independence

- Application programs and ad hoc requests are logically unaffected when
- data is first distributed data is redistributed

Non-subversion

- There should be no way to modify the DB structure other than through the multiple row database language (like SQL)
- It must not be possible to bypass the integrity rules defined through the database language by using lower-level languages

Relations

Definition:

 A relation is a two dimensional table that holds data pertaining to an object of interest called Entity.

Rela	ations		Attributes
T	ID- Number	Name	DoB
uples	143312	Ahmad	12/03/54
	287655	Fatima	04/11/60
	786533	Edris	06/11/64

Relation, Table and File

e a e e e		
Table	Row	Column
		T , 11
File	Record	Field
Relation	Tuple	Attribute

Properties of Relations

- All values in a column must be of the same type
- All of the cells in a relation must be single value (No repeating groups or arrays in a cell)
- Column names must be unique within a relation
- Order of columns and rows is not relevant
- No two rows can be identical

ID-Number	Name	DoB
143312	Ahmad	12/03/54
287655	Fatima	04/11/60
143312	Ahmad	12/03/54

ID-Number	Name	DoB
143312	Ahmad	12/03/54
287655	Fatima	04/11/60
786533	Edris	06/11/64

ID-Number	Name	DoB
143312	Ahmad	12/03/54
287655	Fatima	Accounting
786533	Edris	06/11/64

ID-Number	Name	Phone
143312	Ahmad	0786111111
287655	Fatima	0786222222 0786333333
786533	Edris	078644444

ID-Number	Name	DoB
143312	Ahmad	12/03/54
287655	Fatima	04/11/60
786533	Edris	06/11/64

ID-Number	DoB	Name
143312	12/03/54	Ahmad
287655	04/11/60	Fatima
786533	06/11/64	Edris

ID-Number	Name	DoB
143312	Ahmad	12/03/54
287655	Fatima	04/11/60
786533	Edris	06/11/64

ID-Number	Name	DoB
287655	Fatima	04/11/60
143312	Ahmad	12/03/54
786533	Edris	06/11/64

Spring 2010

Notation

- Relations can be represented in text forms:
- RELNAME(Attribute1, Attribute2, ... AttributeN)

Example: STUDENT(ID_Number, Name, DoB)

Relations in Entity Relationship Diagrams (ERD)

- Entities are represented as Relations
- Relations are shown as boxes in ERD
- Relationships between entities shown by lines in ERD
- Then, the relationship lines shown by 'Foreign Keys' in practical part