پوهنتون کابل

پوهنحی کمپیوترساینس

Introduction to Database and Data Models

تهيه کننده : پوهنيار محمد شعيب "زرين خيل" سال : 1389

Introduction to Database and Data Models - Relational Model

08 By: M Shuaib Zarinkhail 2010

Referential Integrity Constraint (**RIC**)

- Def. A foreign key's values must appear in the parent relation's primary key! Example:
 - EMP(<u>EMP#</u>, Name, DOB, ...)
 - COMPANYCAR(VIN, *EMP*#, Color, ...)
- The value found in *EMP*# in COMPANYCAR, must also appear in <u>EMP#</u> in EMP

RIC

 Referential Integrity – the requirement that the value placed in a Foreign Key must already exist in the table you are linking to (parent table)

Most DBMSs enforce this automatically

-	2			
EME	EMP#	Name	DOB	
EMP	1	Joe	12/15/1955	
	2	Jill	8/3/1967	
	2	lim	0/12/1072	
	3	JIM	9/12/19/3	
	3		9/12/19/5	
COMPANYCAR	VIN	EMP#	Color	
COMPANYCAR	3 VIN 556AA76541	EMP#	Color Blue	
COMPANYCAR	3 VIN 556AA76541 3456FG8876	EMP# 1 3	Golor Blue Yellow	

Does this violate referential integrity?

	EMP#	Name	DOB
EMP	1	Joe	12/15/1955
	2	Jill	8/3/1967
	3	Jim	9/12/1973
COMPANYCAR	VIN	EMP#	Color
COMPANYCAR	VIN 556AA76541	EMP#	Color Blue
COMPANYCAR	VIN 556AA76541 3456FG8876	EMP# 1 3	Color Blue Yellow

Does this violate referential integrity?

RIC Example

STUDENT(<u>NID</u>, Name, Major, *Building*, *Room*)

DORMROOM(Building, Room, Phone)

 In this case: the values for Building and Room must be presented in
"DORMROOM" Prior to being used in "STUDENT"

Special Cases

Case 1: Strong entities

Case 2: Weak entities

Case 3: Super/Sub Class structures

Case 1: Strong Entities

- Most common case
- Create a relation for each entity that contain the entity's attributes
- Identify the Primary key (PK)
- Add any necessary foreign keys to indicate relationships between entities

Strong Entity Example

EMPLOYEE(EmpNo, Name, Address) DEPT(DeptNo, DeptName, Location)

Case 2: Weak Entities

- An entity where an instance must be associated with another (strong) entityinstance in order to exist
 - Existence of weak entity instance depend on a strong entity instance
- Example: EMPLOYEES and DEPENDENTS
 - Dependents can not exist without a corresponding employee

EMPLOYEE (EmpNo, Name,...) DEPENDENT (EmpNo, Name,...)

Case 3: Super/Sub Class Structures

- Each entity becomes a relation
- All entities have the same primary key
- The primary key is shown in the parent relation (ERD)
- Child entities inherit attributes & relationships from parent entities
- Can be Top-Bottom or Bottom-Up

Super/Sub Class Structures

Super/Sub Class Structures

 VEHICLE(<u>VIN</u>, #Passengers, Manufacturer, Model, Year)

- MOTORCYCLE(VIN, #Wheels, EngineSize)
- TRUCK(VIN, MaxWeight, FuelUsed)
- TRAILER(VIN, MaxWeight, #Wheels)

Functional Dependency

- Foreign keys are used to show the relationships between entities
- Functional dependencies are used to show the relationships between attributes within a relation

Functional Dependency

 Def: if an attribute (A) determines the value of another attribute (B), then 'A' functionally determines the value of 'B'

-		
ObjectColor	Weight	Shape
Red	5	Ball
Blue	3	Cube
Yellow	7	Cube

Rules for Functional Dependencies

- A set of attributes can form a functional dependency: A,B,C → D
- Dependencies like A → B, A → C, and A → D can be abbreviated as

$\mathsf{A} \to \mathsf{B} \mathrel{\mathsf{C}} \mathsf{D}$

Rules for Functional Dependencies

Transitivity

- Given A → B and B → C in a relation, then A → C
- This rule allows you to derive new functional dependencies from the existing ones

Functional Dependency Example

Name	DOB	Dept
Joe Smith	12/15/60	Acct
Bill Green	04/11/71	Acct
Joe Smith	12/15/60	Mgt
Tom Wu	08/23/73	Ship
Al Jones	12/15/60	Acct

What functional dependencies exist in this relation?

Determining Keys

- In many cases, the primary key and candidate keys are going to be determinants
- Look for the functional dependencies
- Look for determinants or sets of determinants that cover all of the nondeterminant attributes in a relation

Introduction to Database and Data Models - Normalization

10 By: M Shuaib Zarinkhail 2010

In This Chapter

- What normalization is and what role it plays in database design
- Normal forms: 1NF, 2NF, 3NF, BCNF, (4NF, 5NF, DKNF)
- How normal forms transformed from lower normal forms to higher normal forms?

In This Chapter cont...

- That normalization and E-R modeling are used concurrently to produce a good database design
- That some situations require denormalization to generate information efficiently

Review

Relations:

- Two dimensional data (tables)
- Cells must be single value
- Column names must be unique
- Columns must have the same data type
- Order of rows and columns is not relevant

Normalization

- Def. Decomposing relations to avoid anomalies when inserting, updating or deleting data
- Normalization Steps:
 - Every determinant in a relation must be a candidate key
 - If not, split relation into two or more new relations
- Also serves to reduce redundancy of data

Normalization and Database Design

- Normalization should be part of the design process
- E-R Diagram provides macro view
- Normalization provides micro view of entities
 - Focuses on characteristics of specific entities
 - May yield additional entities

Anomalies

- Redundancy: information repeated in multiple locations
- Update: failure to change all instances of a specific value
- Delete: delete data and lose other values as a side effect problem

Anomalies cont...

Insert:

- need to add data about multiple "themes"
- adding rows may force users to add information about another

General Rule of Thumb: a table should not pertain to more than one entity type

Example

EMPLOYEE 2

Emp_ID	Name	DepN	Salary	<u>Course</u>	Date
100	Margaret	Marketing	48000	SPSS	6/19/200X
100	Margaret	Marketing	48000	Surveys	10/7/200X
140	Alan	Account	52000	Tax Acc	12/8/200X
110	Chris	Info Sys	43000	SPSS	1/12/200X
110	Chris	Info Sys	43000	C++	4/22/200X
190	Lone	Finance	55000	C++	
150	Susan	Marketing	42000	SPSS	6/19/200X
150	Susan	Marketing	42000	Java	8/12/200X

Example Cont...

- Question Is this a relation?
- Answer Yes: unique rows
- Question What's the primary key?
- Answer Composite: <u>Emp_ID, Course_Title</u>

Anomalies in this Table

- Insertion can't enter a new employee without having the employee take a class
- Deletion if we remove employee 140, we loose information about the existence of the "Tax Acc" course
- Modification giving a salary increase to employee 100 forces us to update multiple records

Anomalies in this Table Cont...

Why do these anomalies exist?

- Because we've combined two themes (entity types) into one relation
- This results in duplication, and an unnecessary dependency between the entities

Normalization

- Addresses these anomalies by removing data redundancy
- We will cover the following types of normalization:
 - First Normal Form 1NF
 - Second Normal Form 2NF
 - Third Normal Form 3NF
 - Boyce-Codd Normal Form (BCNF)

Normalization Cont...

- There are several other forms of normalization which will not cover in this course:
 - Fourth Normal Form 4NF
 - Fifth Normal Form 5NF
 - Domain Key Normal Form (DKNF)

First Normal Form – 1NF

The table must meet the definition of a relation:

- No repeating groups
- Each cell hold a single value
- An attribute's entries are all of the same kind
- No two identical rows
- Unique names for each column
- Irrelevant order of rows and columns

First Normal Form Cont...

 If a table meets the criteria of being a relation, it is directly in 1NF

1NF:

- The simplest normal form
- Does little to reduce anomalies
- Is a required precursor to other normal forms

Second Normal Form – 2NF

- A relation is in 2NF if it is in 1NF and all of its non-key attributes are dependent on all parts of the PK or PK consists of only one attribute
 - No partial-dependency
- Non-key attributes: all attributes that are not PK or part of the PK
- Dependent: Attributes appear on the right side of a functional dependency

Second Normal Form Cont...

- This form really affects composite keys
- Composite Keys: Keys that are made up of multiple attributes

Example:

DORMROOM(<u>Building</u>, <u>Room</u>, Phone)

Third Normal Form – 3NF

 A relation is in 3NF if it is already in 2NF and contains no transitive dependencies

 Transitive Dependency: an attribute is functionally dependent on another nonkey attribute

Boyce-Codd Normal Form (BCNF)

- In BCNF, every determinant in a relation should be a candidate key
- Determinant is an attribute whose value determines other values in a record
- 3NF table with one candidate key is already in BCNF

- Sometimes, normalizing a table make more work or cause problems
- In such cases, the following problems may occur:
 - Additional processes need to access data
 - Ambiguous data appear
 - Unknown data appear
 - Data entry become difficult

• etc

- In such case, we can keep a table de-normalized
- Normalization is one of many database design goals
- Normalized table requirements
 - Additional processing
 - Loss of system speed

- Normalization purity is difficult to sustain due to conflict in:
 - Design efficiency
 - Information requirements
 - Processing

- Therefore, we can keep a table in its denormalized form
- This is shown in the following example: STUDENT(ID, Name, Street, District, Province)
- The STUDENT table is kept denormalized

De-normalized Table Defects

- Data updates less efficient
- Indexing more cumbersome
- No simple strategies for creating views

Introduction to Database and Data Models - Normalization

11 By: M Shuaib Zarinkhail 2010