#### پوهنتون کابل

پوهنحی کمپیوترساینس

## Introduction to Database and Data Models



تهيه کننده : پوهنيار محمد شعيب "زرين خيل" سال : 1389

## Introduction to Database and Data Models - Entity Relationship ER

### 17 By: M Shuaib Zarinkhail 2010

#### **Existence Dependency**

 Specifies whether the existence of an entity depends on its participation in a relationship or not



#### **Existence Dependency**

- There are two types of existence dependencies
  - Total participation -an entity can exist only if it participates in a specific relationship
    - Weak entities always have total participation
  - Partial participation -an entity can exist without participating in a specific relationship

#### **Relationship Strength**

- Opposite to the entity strength
- Existence dependent
  - Existence-dependent entities can not exist apart from parent entities
  - Existence-independent entities can exist apart from parent entities
  - EMPLOYEE claims DEPENDENT

#### **Relationship Strength**

#### • Weak (non-identifying)

- One entity is existence-independent on another
- PK of related entity does not contain PK of parent entity
- Strong (identifying)
  - One entity is existence-dependent on another
  - PK of related entity contains PK of parent entity

#### Weak Entity

- Existence-dependent on another entity
- Its primary key is partially or totally derived from parent entity (ID-Dependent)



#### **Composite Relationships**

- Association between entities
- Connected entities are called participants
- Operate in both directions

#### **Composite Relationship**

- Used to 'bridge' between M:N relationships
- Bridge entities composed of primary keys of each entity needing connection



#### **Composite Relationship**



#### **DB Design Strategy Notes**

#### Top-down

- 1) Identify data sets
- 2) Define data elements

#### Bottom-up

- 1) Identify data elements
- 2) Group them into data sets

#### **Top-Down vs. Bottom-Up**



#### Centralized vs. Decentralized Design

- Centralized design
  - Typical for simple databases
  - Conducted by single person or small team
- Decentralized design
  - Larger numbers of entities and complex relations
  - Spread across multiple sites
  - Developed by teams

#### **Decentralized Design**



#### **Entity Supertypes and Subtypes**

- Generalization hierarchy
  - Depicts relationships between higher-level (supertype) and lower-level (subtype) entities
  - Supertype has shared attributes
  - Subtypes have specific attributes

#### **Entity Supertypes and Subtypes**

- Generalization hierarchy
  - Disjoint relationships
    - Unique subtypes
    - Non-overlapping
    - Indicated with a '**G**' or (X)
  - Overlapping subtypes use 'Gs' Symbol or

#### **Entity Supertypes and Subtypes**



#### **Comparison of E-R Modeling Symbols**

- Alternate styles developed to enable easier use of CASE tools
- Chen
  - Moved conceptual design into practical database design arena
- Crow's feet
  - Cannot detail all cardinalities

#### **Comparison of E-R Modeling Symbols**

#### Rein85

- Similar to Crow's feet
- Operates at higher level of abstraction

#### IDEF1X

- Derivative of ICAM studies in the late 1970's
- Uses fewer symbols

#### Comparison of E-R Modeling Symbols

|                   | Chen             | Crow's Foot | Rein85             | IDEF1X      |  |
|-------------------|------------------|-------------|--------------------|-------------|--|
| Entity            |                  |             |                    |             |  |
| Relationship line |                  | · <u> </u>  |                    |             |  |
| Relationship      | $\bigcirc$       |             |                    |             |  |
| Option symbol     | 0                | 0           | 0                  | $\diamond$  |  |
| One (1) symbol    | 1                | 1           | $\bigtriangledown$ |             |  |
| Many (M) symbol   | м                |             | $\bullet$          | 0           |  |
| Composite entity  | $\bigtriangleup$ |             |                    |             |  |
| Weak entity       |                  |             |                    | Figure 3.36 |  |

Spring 2010

By: Zarinkhail @ CSF / KU

# **Concept Design: Tools and Sources**



#### **Conceptual Level Design**

#### Four steps

- Data analysis and requirements
- Entity relationship modeling and normalization
- Data model verification
- Distributed database design

#### **E-R Model Verification**

- E-R model is verified against proposed system processes
  - End user views and required transactions
  - Access paths, security, concurrency control
  - Business-imposed data requirements and constraints

#### **E-R Model Verification**

- Reveals additional entity and attribute details
- Define major components as modules
  - Cohesiveness
  - Coupling

#### **E-R Verification Process**

#### 1. Identify the central entity

- The central entity or repeated entity in E-R Model should be identified
- 2. Identify each module and its components
- 3. Identify each module's transaction requirements:
  - Internal: Updates, Deletes, Queries, Reports
  - External: Module Interfaces

#### **E-R Verification Process**

- 1. Verify all processes against the E-R model
- 2. Make any necessary changes suggested in step 4
- 3. Repeat steps 2 through 5 for all modules

#### **Iterative Process of Verification**



## Introduction to Database and Data Models - Entity Relationship ER

## 18 By: M Shuaib Zarinkhail 2010

#### **Conceptual Level Design**

#### Four steps

- Data analysis and requirements
- Entity relationship modeling and normalization
- Data model verification
- Distributed database design

#### **Distributed Database Design**

- Design portions in different physical locations
- Development of data distribution and allocation strategies

#### **Logical Design**

- Translates conceptual design into internal model
- Maps objects in model to specific DBMS constructs
- Design components
  - Tables Indexes
  - Views

Transactions

Access authorities

#### **DBMS Software Selection**

- DBMS software selection is critical
- Advantages and disadvantages need study
- Factors affecting purchase decisions are:
  - Cost
  - DBMS features and tools
  - Underlying model
  - Portability
  - DBMS hardware requirements

#### **Physical Design**

- Selection of data storage and access characteristics
  - Very technical
  - More important in older hierarchical and network models

#### **Physical Design**

- Becomes more complex for distributed systems
- Designers favor software that hides physical details

#### **Physical Organization**



#### **Implementation & Loading**

- Creation of special storage-related constructs to house end-user tables
- Data loaded into tables
- Other issues
  - Performance
  - Backup and recovery
  - Company standards

- Security
- Integrity
- Concurrency controls

#### **Testing & Evaluation**

- Database is tested and fine-tuned for performance, integrity, concurrent access, and security constraints
- Done in parallel with application programming
- Actions taken if tests fail
  - Fine-tuning based on reference manuals
  - Modification of physical design
  - Modification of logical design
  - Upgrade or change DBMS software or hardware

#### Operation

- Database considered operations
- Starts process of system evaluation
- Unforeseen problems may surface
- Demand for change is constant

#### **Documentation**

- Design processes should be fully documented
  - UoD
  - Business Rules
  - ER Model or Relational Model
  - Physical structures and relationships
  - Interface components and formats
  - Data access and backup methods

#### **Maintenance & Evaluation**

- Preventative maintenance (PM)
- Corrective maintenance
- Adaptive maintenance
- Assignment of access permissions
- Generation of database access statistics to monitor performance
- Periodic security audits based on systemgenerated statistics
- Periodic system usage-summaries

#### Challenge of Database Design: Conflicting Goals

- Database must be designed to conform to design standards
- High-speed processing may require design compromises
- Quest for timely information may be the focus of database design

#### Challenge of Database Design: Conflicting Goals

#### • Other concerns

- Security
- Performance
- Shared access
- Integrity



#### Good Luck!