
پوهنتون کابل
پوهنځی كمپيوترساینس

دیپارتمنت سیستم های معلوماتی

پوهنیار محمد شعیب "زرین خیل":تهیه کننده
1389:سال

By: M Shuaib Zarinkhail 2010

 MySQL supports Local Transactions
within a given client session

 Local Transactions can set through
statements such as
1. SET autocommit …
2. START TRANSACTION or BEGIN [WORK]

 COMMIT
 ROLLBACK

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 2

◦ START TRANSACTION or BEGIN
run your commands

◦ COMMIT (accept changes)
or

◦ ROLLBACK (reject changes)
 The START TRANSACTION or BEGIN

statement starts a new transaction
 COMMIT commits the current transaction
 ROLLBACK rolls back the current transaction

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 3

◦ SET autocommit = {0 | 1}
 The SET autocommit statement
disables or enables the default
autocommit mode for the current
session

 By default, MySQL runs with
autocommit mode enabled

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 4

 autocommit enabled mode means that
as soon as you execute a statement
that updates (modifies) a table, MySQL
stores the update on disk to make it
permanent

 To disable autocommit mode, use the
following statement:
◦ SET autocommit = 0;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 5

 To disable autocommit mode for a
single series of statements, use the
START TRANSACTION statement:
◦ START TRANSACTION;
◦ SELECT @A:=SUM(salary) FROM table1

WHERE type=1;
◦ UPDATE table2 SET summary=@A

WHERE type=1;
◦ COMMIT;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 6

 With START TRANSACTION,
autocommit remains disabled until
you end the transaction with COMMIT
or ROLLBACK

 The autocommit mode then reverts to
its previous state

 START TRANSACTION was added in
MySQL 4.0.11

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 7

 BEGIN and BEGIN WORK are supported
as aliases of START TRANSACTION for
initiating a transaction

 This is standard SQL syntax and is the
recommended way to start an ad-hoc
transaction

 BEGIN and BEGIN WORK are available
from MySQL 3.23.17 and 3.23.19,
respectively

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 8

In this lab you have to:
 Create a database in MySQL Server
 Create tables in that database
 Do data entry to the tables
At the end of the lab hour:
 Record your answers and turn them to
the lab instructor

 Keep the database for future labs
(lab02 and lab03)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 9

By: M Shuaib Zarinkhail 2010

 When using TRANSACTIONs, some
statements cannot be rolled back

 In general, they include data definition
language (DDL) statements, such as
◦ CREATE / DROP DATABASEs
◦ CREATE / DROP TABLEs
◦ ALTER TABLEs

 TRUNCATE TABLE also could no be rolled back

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 11

 You should design your transactions
not to include such statements

 If you issue a statement early in a
transaction that cannot be rolled back,
and then another statement later fails
◦ By ROLLBACK, the full effect of the

transaction cannot be rolled back

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 12

 You can split a transaction in groups
 Each group can be named
 This is called savepoint
 Savepoints are set by users in sessions
 ROLLBACK TO SAVEPOINT rolls back
only commands implemented after the
named savepoint

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 13

◦ SAVEPOINT identifier
◦ ROLLBACK TO SAVEPOINT identifier
◦ RELEASE SAVEPOINT identifier

 Starting from MySQL 4.0.14 and 4.1.1,
InnoDB supports the SQL statements
SAVEPOINT and ROLLBACK TO
SAVEPOINT

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 14

 The SAVEPOINT statement sets a
named transaction savepoint with a
name of identifier

 If the current transaction has a
savepoint with the same name, the old
savepoint is deleted and the new one
is set instead

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 15

 The ROLLBACK TO SAVEPOINT statement
rolls back a transaction to the named
savepoint

 The TRANSACTION does not terminate
with the” rollback to savepoint”
command

 Modifications that the current
transaction made to rows after the
savepoint was set are undone in the
rollback

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 16

 If the ROLLBACK TO SAVEPOINT
statement returns the following error,
it means that no savepoint with the
specified name exists:
◦ ERROR 1181: Got error 153 during

ROLLBACK
 All savepoints of the current
transaction are deleted if you execute
a COMMIT, or a ROLLBACK that does
not name a savepoint

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 17

 LOCK TABLES command locks tables
according to limitations set by users
◦ e.g. read, write

 All tables in a DB are locked except
those are declared in the command
line with the mentioned rights

 You can stop locking tables by
releasing the UNLOCK TABLES
command

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 18

- LOCK TABLES tbl_name [[AS] alias]
lock_type [, tbl_name [[AS] alias]
lock_type]…

- lock_type: READ [LOCAL] |
[LOW_PRIORITY] WRITE

- UNLOCK TABLES

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 19

- LOCK TABLES tOne AS TableOne
WRITE, tTwo AS T2 READ, tThree
READ, tFour READ;

- UNLOCK TABLES;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 20

 A session can acquire or release locks
only for itself

 One session cannot acquire locks for
another session or release locks held
by another session

 Locks may be used to emulate
transactions or to get more speed
when updating tables

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 21

 As of MySQL 4.0.2, to use LOCK
TABLES you must have the LOCK
TABLES privilege, and the SELECT
privilege for each table to be locked

 In MySQL 3.23, you must have SELECT,
INSERT, DELETE, and UPDATE
privileges for all tables in a DB

 UNLOCK TABLES explicitly releases any
table locks held by the current session

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 22

 The LOCK command applies only to
non-TEMPORARY tables
◦ LOCK TABLES is allowed (but ignored) for a

TEMPORARY table
 If you use ALTER TABLE on a locked
table, it may become unlocked
◦ LOCK TABLE tOne WRITE;
◦ alter table tOne add column colFour int;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 23

Table locks are released implicitly under
these conditions:

2. Beginning a transaction (for example,
with START TRANSACTION) implicitly
performs an UNLOCK TABLES

3. If a client connection drops, the
server releases table locks held by
the client

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 24

 A table lock protects only against
inappropriate reads or writes by other
clients

 The client holding the lock, even a
read lock, can perform table-level
operations such as DROP TABLE

 Truncate operations are not
transaction-safe, so an error occurs if
the client attempts the TRUNCATE
command during an active transaction
or while holding a table lock

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 25

 A session that requires locks must
acquire all the locks that it needs in a
single LOCK TABLES statement

 While the locks are held, the session
can access only the locked tables

 For example, in the following
sequence of statements, an error
occurs for the attempt to access t2
because it was not locked in the LOCK
TABLES statement: NEXT SLIDE

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 26

◦ mysql> LOCK TABLES t1 READ;
◦ mysql> SELECT COUNT(*) FROM t1;
+--------------+
| COUNT(*) |
+--------------+
| 3 |
+--------------+
◦ mysql> SELECT COUNT(*) FROM t2;
◦ ERROR 1100 (HY000): Table 't2' was not

locked with LOCK TABLES
Fall 1389By Zarinkhail @ Computer Science Faculty / KU 27

 You cannot refer to a locked table
multiple times in a single query using the
same name

 Use aliases instead, and obtain a
separate lock for the table and each
alias:
◦ mysql> LOCK TABLE t WRITE, t AS t1 READ;
◦ mysql> INSERT INTO t SELECT * FROM t;
◦ ERROR 1100: Table 't' was not locked with

LOCK TABLES
◦ mysql> INSERT INTO t SELECT * FROM t AS t1;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 28

In the previous slide:
 The error occurs for the first INSERT
because there are two references to
the same name for a locked table

 The second INSERT succeeds because
the references to the table use
different names

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 29

 If your statements refer to a table by
means of an alias, you must lock the
table using that same alias

 It does not work to lock the table
without specifying the alias:
◦ mysql> LOCK TABLE t READ;
◦ mysql> SELECT * FROM t AS myalias;
◦ ERROR 1100: Table 'myalias' was not

locked with LOCK TABLES

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 30

 Conversely, if you lock a table using
an alias, you must refer to it in your
statements using that alias:
◦ mysql> LOCK TABLE t AS myalias READ;
◦ mysql> SELECT * FROM t;
◦ ERROR 1100: Table 't' was not locked with

LOCK TABLES
◦ mysql> SELECT * FROM t AS myalias;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 31

 LOCK TABLES acquires locks as
follows:

2. Sort all tables to be locked in an
internally defined order

3. If a table is to be locked with a read
and a write lock, put the write lock
request before the read lock request

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 32

