
پوهنتون کابل
پوهنځی كمپيوترساینس

دیپارتمنت سیستم های معلوماتی

پوهنیار محمد شعیب "زرین خیل":تهیه کننده
1389:سال

By: M Shuaib Zarinkhail 2010

 When DBs created, tables created, PK
& FK assigned, RIC implemented …

 We need to retrieve data from a DB
 To do so we have to query as:
◦ SELECT ColumnNames

 FROM TableNames
WHERE condition (optional)

◦ e.g. select department, maxhours
from project;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 2

SELECT
[ALL | DISTINCT]
[HIGH_PRIORITY]
select_expr [, select_expr ...]
FROM table_references
[WHERE where_condition]
[GROUP BY {col_name | expr | position}
{ASC | DESC}, ...] NEXT SLIDE CONTINUES

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 3

… CONTINUES FROM PRECEDING SLIDE
[HAVING where_condition]
[ORDER BY {col_name | expr | position}
{ASC | DESC}, ...]
[LIMIT row_count]
[INTO OUTFILE 'file_name' export_options
| INTO @var_name [, @var_name]]

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 4

 SELECT is used to retrieve rows
chosen from one or more tables

 You can relate data from database
objects:

 You can JOIN tables (two or more)
 You can use UNIONs and subqueries
 Support for UNION statements and
subqueries is available from MySQL
4.0

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 5

 Each select_expr indicates a column
that you want to retrieve

◦ There must be at least one select_expr

 The table_references indicates the
table or tables from which to retrieve
records

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 6

 The WHERE clause indicates the conditions
that rows must satisfy to be selected
◦ where_condition is an expression that evaluates

to true for each row to be selected
 The statement selects all rows if there is no

WHERE clause
 In the WHERE clause, you can use any of the

functions and operators that MySQL
supports
◦ Except for aggregate (summary) functions

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 7

 SELECT can also be used to retrieve
rows computed without reference to
any table

 For example:
◦ SELECT 1 + 1;

 From MySQL 4.1.0 on, you are allowed
to specify DUAL as a dummy table
name in situations where no tables are
referenced:
◦ SELECT 1 + 1 FROM DUAL;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 8

 DUAL is purely for the convenience of
people who require that all SELECT
statements should have FROM and
possibly other clauses

 MySQL does not require FROM DUAL if
no tables are referenced

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 9

Clauses used must be given in exactly the
order shown in the syntax description

 For example, a HAVING clause must
come after any GROUP BY clause and
before any ORDER BY clause

 The exception is that the INTO clause
can appear either as shown in the syntax
description or immediately following the
select_expr list

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 10

 The list of select_expr terms
comprises the select list that indicates
which columns to retrieve

 Terms specify a column or expression
or can use a * wildcard as shorthand:
◦ i.e. select col1, col2, col3 from tOne;
◦ i.e. select * from tOne;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 11

 A select list consisting only of a single
unqualified * can be used as
shorthand to select all columns from
all tables:
◦ SELECT * FROM t1 INNER JOIN t2 ...

 tbl_name.* can be used as a qualified
shorthand to select all columns from
the named table(s):
◦ SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 12

1: ALIAS names
 A select_expr can be given an alias
using AS alias_name
◦ The alias is used as the expression's

column name and can be used in GROUP
BY, ORDER BY, or HAVING clauses
◦ For example:
◦ SELECT CONCAT(last_name, ', ',

first_name) AS full_name FROM mytable
ORDER BY full_name;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 13

2: ALIAS names
 The AS keyword is optional when
aliasing a select_expr
◦ The preceding example could have been

written like this:
◦ SELECT CONCAT(last_name, ', ',

first_name) full_name FROM mytable
ORDER BY full_name;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 14

3: ALIAS names
 However, because the AS is optional, a
subtle problem can occur if you forget
the comma between two select_expr
expressions:
◦ MySQL interprets the second as an alias

name
◦ For example, in the following statement,

columnB is treated as an alias name:
◦ SELECT columnA columnB FROM mytable;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 15

4: ALIAS names
 The FROM table_references clause
indicates the table or tables from
which to retrieve rows
◦ If you name more than one table, you are

performing a join
◦ For each table specified, you can

optionally specify an alias
◦ tbl_name [[AS] alias]]

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 16

5: NAME REFERENCES
 You can refer to a table within the

default database as tbl_name, or as
db_name.tbl_name

 You can refer to a column as col_name,
tbl_name.col_name, or
db_name.tbl_name.col_name

 You need not specify a tbl_name or
db_name.tbl_name prefix for a column
reference unless the reference would be
ambiguous

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 17

6: ALIAS names
 A table reference can be aliased using
tbl_name AS alias_name or tbl_name
alias_name:
◦ SELECT t1.name, t2.salary FROM employee

AS t1, info AS t2 WHERE t1.name =
t2.name;
◦ SELECT t1.name, t2.salary FROM employee

t1, info t2 WHERE t1.name = t2.name;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 18

7: COLUMN REFERENCES
 Columns selected for output can be referred

to in ORDER BY and GROUP BY clauses using
column names, column aliases, or column
positions
◦ Column positions are integers and begin with 1
◦ The followings are equal queries:
- SELECT college, region, seed FROM tournament

ORDER BY region, seed;
- SELECT college, region AS r, seed AS s FROM

tournament ORDER BY r, s;
- SELECT college, region, seed FROM tournament

ORDER BY 2, 3;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 19

8: COLUMN REFERENCES
 To sort in reverse order, add the DESC
(descending) keyword to the name of
the column in the ORDER BY clause

 The default is ascending order; this
can be specified explicitly using the
ASC keyword (optional)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 20

9: COLUMN REFERENCES
 If ORDER BY occurs within a subquery
and also is applied in the outer query,
the outermost ORDER BY takes
precedence
◦ For example, results for the following

statement are sorted in descending order,
not ascending order:
◦ (SELECT ... ORDER BY a) ORDER BY a DESC;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 21

10: DUPLICATE COLUMN NAMES
 MySQL allows duplicate column names
◦ There can be more than one select_expr

with the same name
◦ SELECT 12 AS a, a FROM t GROUP BY a;
◦ In that statement, both columns have the

name ‘a’
◦ To ensure that the correct column is used

for grouping, use different names for each
select_expr

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 22

11: LIMIT
 The LIMIT clause can be used to
constrain the number of rows returned
by the SELECT statement

 LIMIT takes one or two numeric
arguments, which must both be
nonnegative integer constants

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 23

12: LIMIT
 With two arguments, the first
argument specifies the offset of the
first row to return, and the second
specifies the maximum number of
rows to return
◦ The offset of the initial row is 0 (not 1):
◦ SELECT * FROM tbl LIMIT 5,10; /* Retrieves

rows 6-15*/

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 24

13: LIMIT
 To retrieve all rows from a certain
offset up to the end of the result set,
you can use some large number for
the second parameter
◦ This statement retrieves all rows from the

96th row to the last:
◦ SELECT * FROM tbl LIMIT

95,1844674407370955;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 25

14: LIMIT
 With one argument, the value specifies
the number of rows to return from the
beginning of the result set:
◦ SELECT * FROM tbl LIMIT 5; /* Retrieves

the first 5 rows */
 In other words, LIMIT row_count is
equivalent to LIMIT 0, row_count

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 26

15: Prepared Statements
 For prepared statements, you can use

placeholders (supported as of MySQL 5.0.7)
The following statements will return one row from

the tbl table:
◦ SET @a=1;
◦ PREPARE STMT1 FROM 'SELECT * FROM tbl

LIMIT ?';
◦ EXECUTE STMT1 USING @a;
◦ DEALLOCATE PREPARE STMT1;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 27

16: Prepared Statements
 The following statements will return
the second to sixth row from the tbl
table:
◦ PREPARE STMT2 FROM 'SELECT * FROM tbl

LIMIT ?, ?';
◦ SET @skip=1; SET @numrows=5;
◦ EXECUTE STMT2 USING @skip, @numrows;
◦ DEALLOCATE PREPARE STMT2;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 28

17: Prepared Statements
 This example shows how to create a
prepared statement by using a string
literal to supply the text of the
statement:
◦ PREPARE stmt3 FROM 'SELECT SQRT(POW(?,

2) + POW(?,2)) AS hypotenuse';
◦ SET @a = 3; SET @b = 4;
◦ EXECUTE stmt3 USING @a, @b;
◦ DEALLOCATE PREPARE stmt3;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 29

18: Prepared Statements
 The following example is similar to
the previous, but supplies the text of
the statement as a user variable:
◦ SET @s = 'SELECT SQRT(POW(?,2) + POW(?,

2)) AS hypotenuse';
◦ PREPARE stmt4 FROM @s; SET @a = 6; SET

@b = 8; EXECUTE stmt4 USING @a, @b;
◦ DEALLOCATE PREPARE stmt4;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 30

19: LIMIT
 If LIMIT occurs within a subquery and
also is applied in the outer query, the
outermost LIMIT takes precedence
◦ The following statement produces two

rows, not one:
◦ (SELECT ... LIMIT 1) LIMIT 2;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 31

20. SELECT ... INTO OUTFILE
 The SELECT ... INTO OUTFILE 'file_name'

form of SELECT writes the selected rows to a
text file
◦ SELECT * INTO OUTFILE

“E:\SQL89\BKUP\tOneBKup.txt” FROM tOne;
 The file is created in the specified location
 file_name cannot be an existing file
 The SELECT ... INTO OUTFILE statement is

intended primarily to let you very quickly
dump a table to a text file

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 32

21. SELECT ... INTO OUTFILE
 SELECT ... INTO OUTFILE is the
complement of LOAD DATA INFILE

 The LOAD DATA INFILE command can
be implemented to enter unlimited
data from an external text file

 The text file should be located in the
home directory for MySQL or in the
database folder which is created by
the DBMS

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 33

22. SELECT ... INTO OUTFILE
 For the first option, you can use the

following command
◦ LOAD DATA INFILE “/DataFileName.txt” INTO

TABLE tableName
◦ i.e. load data infile “/tOneBKup.txt” into table

tOne;
 For the second option, you just need the file

name in the command
◦ LOAD DATA INFILE “DataFileName.txt” INTO

TABLE tableName
◦ i.e. load data infile “tOneBKup.txt” into table

tOne;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 34

By: M Shuaib Zarinkhail 2010

 Following the SELECT keyword, you
can use a number of options that
affect the operation of the statement

 The ALL, DISTINCT, and DISTINCTROW
options specify whether duplicate
rows should be returned

 If none of these options are given, the
default is ALL (all matching rows are
returned)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 36

 DISTINCT and DISTINCTROW are
synonyms and specify removal of
duplicate rows from the result set

 HIGH_PRIORITY, STRAIGHT_JOIN, and
options beginning with SQL_ are
MySQL extensions to standard SQL

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 37

1. HIGH_PRIORITY
 HIGH_PRIORITY gives the SELECT
higher priority than a statement that
updates a table

 You should use this only for queries
that are very fast and must be done at
once

 HIGH_PRIORITY cannot be used with
SELECT statements that are part of a
UNION

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 38

2. STRAIGHT_JOIN
 STRAIGHT_JOIN forces the optimizer
to join the tables in the order in which
they are listed in the FROM clause

 You can use this to speed up a query
if the optimizer joins the tables in
nonoptimal order

 STRAIGHT_JOIN also can be used in
the table_ references list (JOIN Syntax)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 39

3. SQL_BIG_RESULT
 SQL_BIG_RESULT can be used with

GROUP BY or DISTINCT to tell the
optimizer that the result set has many
rows

 In this case, MySQL directly uses disk-
based temporary tables if needed, and
prefers sorting to using a temporary
table with a key on the GROUP BY
elements

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 40

4. SQL_BUFFER_RESULT
 SQL_BUFFER_RESULT forces the result to

be put into a temporary table
 This helps MySQL free the table locks

early and helps in cases where it takes a
long time to send the result set to the
client

 This option can be used only for top-
level SELECT statements, not for
subqueries or following UNION

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 41

5. SQL_SMALL_RESULT
 SQL_SMALL_RESULT can be used with
GROUP BY or DISTINCT to tell the
optimizer that the result set is small

 In this case, MySQL uses fast
temporary tables to store the resulting
table instead of using sorting

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 42

6. SQL_CALC_FOUND_ROWS
 SQL_CALC_FOUND_ROWS (available in
MySQL 4.0.0 and up) tells MySQL to
calculate how many rows there would
be in the result set, disregarding any
LIMIT clause

 The number of rows can then be
retrieved with SELECT FOUND_ROWS()
function

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 43

7. SQL_CACHE and SQL_NO_CACHE
 The SQL_CACHE and SQL_NO_CACHE

options affect caching of query results in
the query cache

 SQL_CACHE tells MySQL to store the
result in the query cache if it is cacheable
and the value of the query_cache_type
system variable is 2 or DEMAND

 SQL_NO_CACHE tells MySQL not to store
the result in the query cache

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 44

In this lab you have to:
 Create new tables in the movies
database

 Enter data to the new created tables
At the end of lab time:
 Record your answers and turn them to
the lab instructor

 Email your database backup file
created by the mysqldump command
to your instructor

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 45

By: M Shuaib Zarinkhail 2010

 MySQL supports the following JOIN syntaxes
for the table_references part of SELECT
statements

 It can also be used for the multiple-table
DELETE and UPDATE statements

 table_references:
◦ table_reference, table_reference
◦ table_reference INNER JOIN table_reference

[join_condition]
◦ table_reference {LEFT|RIGHT} [OUTER] JOIN

table_reference join_condition
◦ table_reference NATURAL [{LEFT|RIGHT} [OUTER]]

JOIN table_reference

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 47

1. SELECT * FROM table1,table2 WHERE
table1.id=table2.id;

2. SELECT * FROM table1 LEFT JOIN
table2 ON table1.id=table2.id;

3. SELECT * FROM table1 LEFT JOIN
table2 USING (id);

4. SELECT * FROM table1 LEFT JOIN
table2 ON table1.id=table2.id LEFT
JOIN table3 ON table2.id=table3.id;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 48

 A table reference can be aliased
using tbl_name AS alias_name or
tbl_name alias_name:

◦ SELECT t1.name, t2.salary FROM
employee AS t1, info AS t2 WHERE
t1.name = t2.name;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 49

 If there is no matching row for the
right table in the ON or USING part in
a LEFT JOIN, a row with all columns set
to NULL is used for the right table

 You can use this fact to find rows in a
table that have no counterpart in
another table:
◦ SELECT left_tbl.* FROM left_tbl LEFT JOIN

right_tbl ON left_tbl.id = right_tbl.id
WHERE right_tbl.id IS NULL;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 50

 RIGHT JOIN works analogously to
LEFT JOIN

 To keep code portable across
databases, it is recommended that
you use LEFT JOIN instead of
RIGHT JOIN

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 51

 A subquery is a SELECT statement
within another statement

 Here is an example of a subquery:
◦ SELECT * FROM t1 WHERE column1 =

(SELECT column1 FROM t2);
 In this example, SELECT * FROM t1 ...
is the outer query and (SELECT
column1 FROM t2) is the subquery

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 52

 We say that the subquery is nested
within the outer query

 Therefore, it is possible to nest
subqueries within other subqueries

 It can continue to a considerable
depth

 A subquery must always appear within
parentheses

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 53

 They allow queries that are structured
so that it is possible to isolate each
part of a statement

 They provide alternative ways to
perform operations that would
otherwise require complex joins and
unions

 They are more readable than complex
joins or unions

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 54

DELETE FROM t1
WHERE s11 > ANY

(SELECT COUNT(*) FROM t2
WHERE NOT EXISTS

(SELECT * FROM t3
WHERE ROW(5*t2.s1,77)=

(SELECT 50,11*s1 FROM t4 UNION
SELECT 50,77 FROM
(SELECT * FROM t5) AS t5)));

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 55

 A subquery can contain any of the
keywords
◦ i.e. UNION (SELECT a FROM t2 WHERE

a=11 AND B=2 ORDER BY a LIMIT 10);
 The most common use of a subquery is in the

form:
◦ non_subquery_operand

comparison_operator (subquery)
 Where comparison_operator is one of these

operators:
= > < >= <= <> != <=>

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 56

 Here is an example of a common-
form subquery comparison that you
cannot do with a join

 It finds all the rows in table t1 for
which the column1 value is equal to a
maximum value in table t2:
◦ SELECT * FROM t1 WHERE column1 =

(SELECT MAX(column2) FROM t2);

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 57

 This example again is impossible with
a join because it involves aggregating
for one of the tables

 It finds all rows in table t1 containing
a value that occurs twice in a given
column:
◦ SELECT * FROM t1 AS t WHERE 2 = (SELECT

COUNT(*) FROM t1 WHERE t1.id = t.id);

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 58

Syntax:
2. operand comparison_operator ANY

(subquery)

4. operand IN (subquery)

6. operand comparison_operator SOME
(subquery)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 59

 The ANY keyword means “return TRUE if the
comparison is TRUE for ANY of the values in
the column that the subquery returns”

 For example:
◦ SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1

FROM t2);
◦ Suppose that there is a row in table t1 containing

(10)
 The expression is TRUE if table t2 contains (21,14,7)

because there is a value 7 in t2 that is less than 10
 The expression is FALSE if table t2 contains (20,10), or if

table t2 is empty
 The expression is unknown if table t2 contains

(NULL,NULL,NULL)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 60

 When used with a subquery, the word IN is
an alias for = ANY

 Thus, these two statements are the same:
◦ SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1

FROM t2);
◦ SELECT s1 FROM t1 WHERE s1 IN (SELECT s1

FROM t2);
 IN and = ANY are not synonyms when used

with an expression list
◦ IN can take an expression list, but = ANY cannot

 NOT IN is not an alias for <> ANY, but for
<> ALL

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 61

 The word SOME is an alias for ANY
 Thus, these two statements are the
same:
◦ SELECT s1 FROM t1 WHERE s1 <> ANY

(SELECT s1 FROM t2);
◦ SELECT s1 FROM t1 WHERE s1 <> SOME

(SELECT s1 FROM t2);
 Use of the word SOME is rare

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 62

Syntax:
 operand comparison_operator ALL

(subquery)
 The word ALL, which must follow a

comparison operator, means “return TRUE if
the comparison is TRUE for ALL of the
values in the column that the subquery
returns”

 For example:
◦ SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

continues to the NEXT SLIDE

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 63

 Suppose that there is a row in table t1
containing (10)
◦ The expression is TRUE if table t2 contains

(-5,0,+5) because 10 is greater than all three
values in t2
◦ The expression is FALSE if table t2 contains

(12,6,NULL,-100) because there is a single value
12 in table t2 that is greater than 10
◦ The expression is unknown (that is, NULL) if table

t2 contains (0,NULL,1)
◦ Finally, if table t2 is empty, the result is TRUE

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 64

 So the following statement is TRUE when
table t2 is empty:
◦ SELECT * FROM t1 WHERE 1 > ALL (SELECT s1

FROM t2);
 But this statement is NULL when table t2 is

empty:
◦ SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM

t2);
 In addition, the following statement is NULL

when table t2 is empty:
◦ SELECT * FROM t1 WHERE 1 > ALL (SELECT

MAX(s1) FROM t2);

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 65

By: M Shuaib Zarinkhail 2010

 If a subquery returns any rows at all,
EXISTS subquery is TRUE, and NOT
EXISTS subquery is FALSE

 For example:
◦ SELECT column1 FROM t1 WHERE EXISTS

(SELECT * FROM t2);
 Traditionally, an EXISTS subquery
starts with SELECT *, but it could
begin with SELECT 5 or SELECT
column1 or anything at all

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 67

 For the preceding example, if t2
contains any rows, even rows with
nothing but NULL values, the EXISTS
condition is TRUE

 The following are some more realistic
examples using EXISTS and NOT
EXISTS keywords in a subquery

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 68

What kind of store is present in one or
more cities?
◦ SELECT DISTINCT store_type FROM stores WHERE EXISTS

(SELECT * FROM cities_stores WHERE
cities_stores.store_type = stores.store_type);

What kind of store is present in no
cities?
◦ SELECT DISTINCT store_type FROM stores WHERE NOT

EXISTS (SELECT * FROM cities_stores WHERE
cities_stores.store_type = stores.store_type);

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 69

What kind of store is present in all
cities?
◦ SELECT DISTINCT store_type FROM
stores s1 WHERE NOT EXISTS (SELECT
* FROM cities WHERE NOT EXISTS
(SELECT * FROM cities_stores WHERE
cities_stores.city = cities.city AND
cities_stores.store_type =
stores.store_type));

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 70

 Subqueries are legal in a SELECT
statement's FROM clause

 The actual syntax is:
◦ SELECT ... FROM (subquery) [AS] name ...

 The [AS] name clause is mandatory
◦ Because every table in a FROM clause must

have a name
 Any columns in the subquery select
list must have unique names

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 71

 For the sake of illustration, assume that you
have this table:
◦ CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

 Here is how to use a subquery in the FROM
clause, using the example table:
◦ INSERT INTO t1 VALUES (1,'1',1.0);
◦ INSERT INTO t1 VALUES (2,'2',2.0);
◦ SELECT sb1,sb2,sb3 FROM (SELECT s1 AS sb1, s2

AS sb2, s3*2 AS sb3 FROM t1) AS sb WHERE sb1
> 1;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 72

Here is another example:
 Suppose that you want to know the average

of a set of sums for a grouped table
 This does not work:
◦ SELECT AVG(SUM(column1)) FROM t1 GROUP BY

column1;
 However, this query provides the desired

information:
◦ SELECT AVG(sum_column1) FROM (SELECT

SUM(column1) AS sum_column1 FROM t1 GROUP
BY column1) AS t1;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 73

 Use field names instead of * wildcard
 While using Aggregate Functions use the

GROUP BY command
◦ To make sure the function is worked
◦ e.g. select name, count (*) from project group by

department;
 Do not use the HAVING keyword with out

GROUP BY command
◦ e.g. select name, count (*) from project group by

department having count(*) > 1;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 74

 Make clear JOIN commands
◦ to show which table is in the left side and

which table is in the right side
 Use SQL-92 base JOIN commands
◦ e.g. name every JOIN word as LEFT OUTER

JOIN, RIGHT OUTER JOIN …
 While joining a table to its own, be
careful (recursive)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 75

 OUTER JOINs usually show NULL
values

 Use care for the Boolean statement(s)
after the WHERE keyword
◦ It should be logically correct

 Run query for several times before
using it in practical environment

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 76

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 77

ProjectID Name Department MaxHours

1000
1200
1400
1500

03 Portfolio Analysis
03 Tax Prep
04 Product Plan
04 Portfolio Analysis

Finance
Accounting
Marketing
Finance

75.0
145.0
138.0
110.0

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 78

Employee
Number

Name Phone Department

100
200
300
400
500
600
700

Mary Jacobs
Keni Numoto
Heather Jones
Rosalie Jackson
James Nestor
Richard Wu
Kim Sung

285-8879
287-0098
287-9981
285-1273
287-0123
287-3222

Accounting
Marketing
Finance
Accounting
Info Systems
Info Systems
Marketing

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 79

ProjectID EmployeeNum HoursWorked
1000
1000
1000
1000
1200
1200
1200
1400
1400
1400

100
300
400
500
100
400
600
200
700
500

17.50
12.50
8.00

20.25
45.75
70.50
40.50
75.00
20.25
25.25

By: M Shuaib Zarinkhail 2010

 Reading some fields from one table (projection)
SELECTName, Department, MaxHours

FROM PROJECT;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 81

MaxHoursDepartmentName
75.0FinanceQ3 Portfolio Analysis
145.0AccountingQ3 Tax Prep
138.0MarketingQ4 Product Plan
110.0FinanceQ4 Portfolio Analysis

 The result of a query is always shown
in one table
◦ Even if it queries from multiple tables
◦ In some cases a table with one row and

zero records can be the result of a query
◦ e.g. select Name from PROJECT where

MaxHours > 150.0;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 82

 Name

 We can restructure a table by SELECT statement
SELECT Name, MaxHours, Department
FROM PROJECT;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 83

DepartmentMaxHoursName
Finance75.0Q3 Portfolio Analysis
Accounting145.0Q3 Tax Prep
Marketing138.0Q4 Product Plan
Finance110.0Q4 Portfolio Analysis

 This query only shows one field
SELECTDepartment

FROM PROJECT;
 The first and last rows
have the same (repeated)
data
◦ To eliminate it see next slide

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 84

Department
Finance
Accounting
Marketing
Finance

 This query only shows one field (no
repeated data)
SELECTDISTINCT Department

FROM PROJECT;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 85

Department
Finance
Accounting
Marketing

 Reading some rows from one table
(selection)
SELECT ProjectID, Name, Department, MaxHours

FROM PROJECT WHERE Department =
‘Finance’;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 86

Project
ID

Name Department MaxHours

1000 Q3 Portfolio Analysis Finance 75.0

1500 Q4 Portfolio Analysis Finance 110.0

 An alternative way to the previous query

SELECT *
 FROM PROJECT WHERE Department =
‘Finance’;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 87

ProjectID Name Department MaxHours

1000 Q3 Portfolio Analysis Finance 75.0

1500 Q4 Portfolio Analysis Finance 110.0

 We can use more than one condition after WHERE
SELECT * FROM PROJECT
 WHERE Department=‘Finance’ AND
MaxHours>100;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 88

Project
ID

Name Department MaxHours

1500 Q4 Portfolio Analysis Finance 110.0

 We can use both selection & projection in
one query
SELECT Name, Department

FROM EMPLOYEE
WHERE Department = ‘Accounting’;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 89

Name Department
Mary Jacobs Accounting

Rosalie Jackson Accounting

Relational Operators / Descriptions used
for queries:

 > Greater Than
 >= Greater Than or Equal To
 < Less Than
 <= Less Than or Equal To
 = Equal To
 <> Not Equal To
 != Not Equal To
 IN (list) Contained in comma-

separated list
 LIKE string Matches string pattern

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 90

 Logical Operators
 We use logical operators to combine
the results of two conditions

 AND Both conditions need to be
true

 OR Either condition may be true
 NOT Negates operation
 BETWEEN min AND max
◦ e.g. True if value is >= min and <= max

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 91

 We can use IN keyword to find data within groups
SELECT Name, Phone, Department

 FROM EMPLOYEE WHERE Department
IN)‘Accounting’, ‘Finance’, ‘Marketing’(;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 92

Name Phone Department
Mary Jacobs 285-8879 Accounting
Kenji Numoto 287-0098 Marketing
Heather Jones 287-9981 Finance
Rosalie Jackson 285-1273 Accounting
Kim Sung 287-3222 Marketing

 Similarly NOT IN keyword acts against the
previous query
SELECT Name, Phone, Department

 FROM EMPLOYEE WHERE Department
NOT IN)‘Accounting’, ‘Finance’,

‘Marketing’(;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 93

Name Phone Department
James Nester Info Systems

Richard Wu 287-0123 Info Systems

 We can use BETWEEN keyword for ranges
SELECT Name, Department
FROM EMPLOYEE
WHERE EmployeeNumber BETWEEN 200 AND
500;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 94

Name Department
Kenji Numoto Marketing
Heather Jones Finance
Rosalie Jackson Accounting
James Nestor Info Systems

 This query is similar to the previous
one with no BETWEEN keyword (takes
longer space and more work)
SELECTName, Department

FROM EMPLOYE
WHERE EmployeeNumber >= 200
AND EmployeeNumber <= 500;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 95

 We can use LIKE keyword to show a part of a value in a field
◦ We can use the Underscore (_) wild card as a character

place holder
SELECT * FROM PROJECT
WHERE Name LIKE ‘Q_ Portfolio Analysis’;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 96

ProjectID Name Department MaxHours

1000 Q3 Portfolio Analysis Finance 75.0

1500 Q4 Portfolio Analysis Finance 110.0

 We can use the ‘%’ wildcard for showing one or
more characters
◦ In Access we use ‘?’ for one and ‘%’ for more characters
◦ To show all employees with phone number starting by 285

SELECT * FROM EMPLOYEE
WHERE Phone LIKE ‘285-%’;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 97

EmployeeNumber Name Phone Department

100 Mary Jacobs 285-8879 Accounting

400 Rosalie Jackson 285-1273 Accounting

 e.g. To show with department ending by ing
SELECT * FROM EMPLOYEE
WHERE Department LIKE ‘%ing’;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 98

EmployeeNumbe
r

Name Phone Department

100 Mary Jacobs 285-8879 Accounting

200 Kenji Numoto 287-0098 Marketing

400 Rosalie Jackson 285-1273 Accounting

700 Kim Sung 287-3222 Marketing

 To find records with null values we
can use the ‘IS NULL’ wildcard as:

SELECT Name, Department FROM EMPLOYEE
WHERE Phone IS NULL;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 99

Name Department

James Nester Info Systems

By: M Shuaib Zarinkhail 2010

 We can use the
‘ORDER BY’ keywords
for sorting a query
result as:

SELECT Name, Department
FROM EMPLOYEE
ORDER BY Department;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 101

Name Department

Mary Jacobs Accounting

Rosalie Jackson Accounting

Heather Jones Finance

James Nestor Info Systems

Richard Wu Info Systems

Kenji Numoto Marketing

Kim Sung Marketing

 By default, SQL sorts data as
ascending
◦ We can type the ‘ASC’ keyword after field

name

 If needed, we can use the ‘DESC’
keyword and show results in
descending order

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 102

 The result of this query
is the same the
previous but
descending department
name

SELECT Name, Department
FROM EMPLOYEE
ORDER BY Department

DESC;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 103

Name Department

Kenji Numoto Marketing

Kim Sung Marketing

Richard Wu Info Systems

James Nestor Info Systems

Heather Jones Finance

Rosalie
Jackson

Accounting

Mary Jacobs Accounting

 A sort can be implement
on more than one field
in a query as:

SELECT Name,
Department

FROM EMPLOYEE
ORDER BY
Department DESC,
Name ASC;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 104

Name Department

Kenji Numoto Marketing

Kim Sung Marketing

James Nestor Info Systems

Richard Wu Info Systems

Heather Jones Finance

Mary Jacobs Accounting

Rosalie
Jackson

Accounting

 We can aggregate and abbreviate
data as:
◦ Count data
◦ Collect data
◦ Find minimum data value
◦ Find maximum data value
◦ Find the average of a data range
◦…

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 105

To achieve the mentioned goals
 We can use the ‘Aggregate Functions’
 Aggregate Functions are ‘built-in’
◦ They differ in DBMSs
◦ MySQL has 5 built-in functions (next slide)

 Aggregate Functions use arithmetic
operations on data and show the
results
◦ While using these functions, we should

use the ‘Group By’ keywords in that query

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 106

We can aggregate and
abbreviate data as:
◦Count data
◦Collect data
◦Find minimum data value
◦Find maximum data value
◦Find the average of a data range
◦…

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 107

 MySQL has 5 built-in Aggregate
Functions

 COUNT (*[ALL | DISTINCT] expression)
 SUM ([ALL | DISTINCT]expression)
 AVG ([ALL | DISTINCT]expression)
 MAX (expression)
 MIN (expression)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 108

 This query counts employees in each
department

SELECT Department, COUNT(*) FROM
EMPLOYEE

GROUP BY Department;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 109

Department Count(*)
Accounting 2
Marketing 2
Finance 1
Info Systems 2 .

 Shows the more than one employees regarding to
the counted column

SELECT Department, COUNT(*) FROM EMPLOYEE
GROUP BY Department HAVING COUNT(*) > 1;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 110

Department COUNT(*)
Accounting 2
Marketing 2
Info Systems 2 .

 COUNT() and SUM() functions are
different

◦ COUNT(): Counts the number of records
◦ SUM(): Calculates the total of numeric

fields values
◦ Example, Next Slide

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 111

SELECT COUNT(MaxHours) ‘All
Records’, SUM(MaxHours) ‘Total
Hours’

FROM PROJECT;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 112

All Records Total Hours

4 468.00

 We can use the DISTINCT keyword
◦ Compare these two examples

1. SELECT COUNT(Department) FROM PROJECT;
2. SELECT COUNT(DISTINCT Department) FROM

PROJECT;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 113

COUNT (DISTINCT
Department)

 3

COUNT (Department)

 4

 MIN(), MAX(), & AVG() examples:
SELECT MIN(MaxHours) ‘Lowest Hours’,
MAX(MaxHours), SUM(MaxHours)
FROM PROJECT
WHERE ProjectID < 1500;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 114

Lowest Hours MAX(MaxHours) SUM(MaxHours)

75.00 145.00 358.00

 We can not use aggregate
functions after the WHERE clause
in a query
◦ e.g. This command is prohibited:

… WHERE MaxHours <
AVG(MaxHours);

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 115

 Important points regarding the usage
of Aggregate Functions
◦ Assign column names while using

aggregate functions (these function leave
column names empty)
◦ Be careful! Aggregate functions that

calculate or average values, ignore NULLs
in tables

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 116

 We can use one or many tables in a
single query
◦ e.g. Show employee names, who had

worked more than 40 hours on every
assignment
◦ To query this, data from two tables is

needed
◦ We can use subquery
 Example (Next Slide)

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 117

SELECT Name
FROM EMPLOYEE
WHERE EmployeeNumber

IN
(SELECT DISTINCT

EmployeeNum
FROM ASSIGNMENT
WHERE HoursWorked >
40);

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 118

Name
Mary Jacobs

Rosalie Jackson
Richard Wu

Kenji Numoto

 We can use the subquery
method to design queries;
hence, a simpler method is
using joins instead of
subqueries
◦ e.g. This query joins two tables

SELECT Name, HoursWorked
FROM EMPLOYEE, ASSIGNMENT
WHERE
EmployeeNumber =
EmployeeNum;

Fall 1389By Zarinkhail @ Computer Science Faculty / KU 119

Name HoursWorke
d

Mary Jacobs 17.50

Mary Jacobs 45.75

Kenji Numoto 75.00

Heather Jones 12.50

Rosalie
Jackson

8.00

Rosalie
Jackson

70.50

James Nestor 20.25

James Nestor 25.25

Richard Wu 40.50

Kim Sung 20.25

Good Luck!

