
LPI exam 101 prep: Devices, Linux filesystems,
and the Filesystem Hierarchy Standard
Junior Level Administration (LPIC-1) topic 104

Skill Level: Intermediate

Ian Shields (ishields@us.ibm.com)
Senior Programmer
IBM

28 Dec 2005

In this tutorial, Ian Shields continues preparing you to take the Linux Professional
Institute® Junior Level Administration (LPIC-1) Exam 101. In this fourth in a series of
five tutorials, Ian introduces you to Linux® devices, filesystems, and the Filesystem
Hierarchy Standard. By the end of this tutorial, you will know how to create and
format partitions with different Linux filesystems and how to manage and maintain
those systems.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at two
levels: junior level (also called "certification level 1") and intermediate level (also
called "certification level 2"). To attain certification level 1, you must pass exams 101
and 102; to attain certification level 2, you must pass exams 201 and 202.

developerWorks offers tutorials to help you prepare for each of the four exams. Each
exam covers several topics, and each topic has a corresponding self-study tutorial
on developerWorks. For LPI exam 101, the five topics and corresponding
developerWorks tutorials are:

Table 1. LPI exam 101: Tutorials and topics

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 56

mailto:ishields@us.ibm.com
http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

LPI exam 101 topic developerWorks tutorial Tutorial summary

Topic 101 LPI exam 101 prep (topic
101):
Hardware and architecture

Learn to configure your
system hardware with Linux.
By the end of this tutorial, you
will know how Linux
configures the hardware found
on a modern PC and where to
look if you have problems.

Topic 102 LPI exam 101 prep:
Linux installation and package
management

Get an introduction to Linux
installation and package
management. By the end of
this tutorial, you will know how
Linux uses disk partitions, how
Linux boots, and how to install
and manage software
packages.

Topic 103 LPI exam 101 prep:
GNU and UNIX commands

Get an introduction to
common GNU and UNIX
commands. By the end of this
tutorial, you will know how to
use commands in the bash
shell, including how to use text
processing commands and
filters, how to search files and
directories, and how to
manage processes.

Topic 104 LPI exam 104 prep:
Devices, Linux filesystems,
and the Filesystem Hierarchy
Standard.

(This tutorial). Learn how to
create filesystems on disk
partitions, as well as how to
make them accessible to
users, manage file ownership
and user quotas, and repair
filesystems as needed. Also
learn about hard and symbolic
links, and how to locate files in
your filesystem and where
files should be placed. See
detailed objectives below.

Topic 110 LPI exam 110 prep:
The X Window system

Learn about the X Window
System on Linux. By the end
of this tutorial, you will know
how to install and maintain the
X Window System. This
tutorial covers both major
packages for X on Linux:
XFree86 and X.Org.

To pass exams 101 and 102 (and attain certification level 1), you should be able to:

• Work at the Linux command line

• Perform easy maintenance tasks: help out users, add users to a larger
system, back up and restore, and shut down and reboot

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 2 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1110-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1110-i.html
http://www.ibm.com/legal/copytrade.shtml

• Install and configure a workstation (including X) and connect it to a LAN,
or connect a stand-alone PC via modem to the Internet

To continue preparing for certification level 1, see the developerWorks tutorials for
LPI exam 101. Read more about the entire set of developerWorks LPI tutorials.

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lpi.org.

About this tutorial

Welcome to "Devices, Linux filesystems, and the Filesystem Hierarchy Standard",
the fourth of five tutorials designed to prepare you for LPI exam 101. In this tutorial,
you learn how to create and manage partitions. You also learn about the Filesystem
Hierarchy Standard (FHS), which recommends where different types of data can be
found and should be stored on a Linux system.

is organized according to the LPI objectives for this topic. Very roughly, expect more
questions on the exam for objectives with higher weight.

Table 2. Devices, Linux filesystems, and the Filesystem Hierarchy Standard: Exam objectives
covered in this tutorial

LPI exam objective Objective weight Objective summary

1.104.1
Create partitions and
filesystems

Weight 3 Learn to configure disk
partitions and create
filesystems on media such as
hard disks. Use various mkfs
commands to set up
filesystems, including ext2,
ext3, reiserfs, vfat, and xfs.

1.104.2
Maintain the integrity of
filesystems

Weight 3 Learn to verify the integrity of
filesystems, monitor free
space and inodes, and repair
simple filesystem problems.
Learn to maintain standard
filesystems and journaling
filesystems.

1.104.3
Mount and unmount
filesystems

Weight 3 Learn to mount and unmount
filesystems manually. Also
learn to configure filesystem
mounting on bootup, and
configure removable
filesystems, such as tape
drives, floppies, and CDs, so
that ordinary users can mount
and unmount them.

1.104.4
Manage disk quota

Weight 5 Learn to manage disk quotas
for users, including setting up
quotas for a filesystem, and
editing, checking, and

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 56

http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

generating user quota reports.

1.104.5
Use file permissions to control
access to files

Weight 5 Learn to control file access
through permissions, including
access permissions on regular
and special files as well as
directories. Also learn about
access modes such as suid,
sgid, and the sticky bit; the
use of the group field to grant
file access to workgroups; the
immutable flag; and the
default file creation mode.

1.104.6
Manage file ownership

Weight 1 Learn to control user and
group ownership of files,
including how to change the
user and group owner of a file
as well as the default group
owner for new files.

1.104.7
Create and change hard and
symbolic links

Weight 1 Learn to create and manage
hard and symbolic links to a
file, including creating and
identifying links. Learn to copy
files through links, and use
linked files to support system
administration tasks.

1.104.8
Find system files and place
files in the correct location

Weight 5 Learn about the Filesystem
Hierarchy Standard, including
typical file locations and
directory classifications. Learn
to find files and commands on
a Linux system.

Prerequisites

To get the most from this tutorial, you should have a basic knowledge of Linux and a
working Linux system on which you can practice the commands covered in this
tutorial.

This tutorial builds on content covered in the previous three tutorials in this series, so
you may want to first review the tutorials for topics 101, 102, and 103.

Different versions of a program may format output differently, so your results may
not look exactly like the listings and figures in this tutorial.

Section 2. Creating partitions and filesystems

This section covers material for topic 1.104.1 for the Junior Level Administration

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 4 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/legal/copytrade.shtml

(LPIC-1) exam 101. The topic has a weight of 3.

In this section, you learn how to:

• Configure disk partitions

• Create filesystems on hard disks and other media

• Use mkfs commands to set up ext2, ext3, reiserfs, vfat, and xfs partitions

First, a quick review. In the tutorial for topic 101, "LPI exam 101 prep (topic 101):
Hardware and architecture," you learned about IDE and SCSI hard drives such as
/dev/hda and /dev/sdb, and partitions on these drives, such as /dev/hda1, /dev/hda5
and /dev/sda1.

In the tutorial for topic 102, "LPI exam 101 prep (topic 102): Linux installation and
package management," you learned more about partitions, including primary,
extended, and logical partitions. You also learned that a Linux filesystem contains
files that are arranged on a disk or other block storage device in directories. As with
many other systems, directories on a Linux system may contain other directories
called subdirectories. That tutorial also discussed the considerations that guide you
in making choices about partitioning.

This section reviews block devices and partitions, and then introduces you to the
fdisk command, which is used to create, modify, or delete partitions on block
devices. It also introduces the various forms of the mkfs command (mkfs stands for
make filesystem); these commands are used to format partitions as a particular
filesystem type.

Note: In addition to the tools and filesystems required for the LPI exams, you may
encounter or need other tools and filesystems. Find a brief summary of some other
available tools in Other tools and filesystems.

Block devices and partitions

Let's quickly review block devices and partitions. If you need more information, refer
back to the tutorials for topic 101 and topic 102.

Block devices

A block device is an abstraction layer for any storage device that can be formatted in
fixed-size blocks; individual blocks may be accessed independently of access to
other blocks. Such access is often called random access.

The abstraction layer of randomly accessible fixed-size blocks allows programs to
use these block devices without worrying about whether the underlying device is a
hard drive, floppy, CD, network drive, or some type of virtual device such as an
in-memory file system.

Examples of block devices include the first IDE hard drive on your system (/dev/hda)

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 56

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

or the second SCSI drive (/dev/sdb). Use the ls -l command to display /dev
entries. The first character on each output line is b for a block device, such as
floppy, CD drive, IDE hard drive, or SCSI hard drive; and c for a character device,
such as a tape drive or terminal. See the examples in Listing 1.

Listing 1. Linux block and character devices
[ian@lyrebird ian]$ ls -l /dev/fd0 /dev/hda /dev/sdb /dev/st0 /dev/tty0
brw-rw---- 1 ian floppy 2, 0 Jun 24 2004 /dev/fd0
brw-rw---- 1 root disk 3, 0 Jun 24 2004 /dev/hda
brw-rw---- 1 root disk 8, 16 Jun 24 2004 /dev/sdb
crw-rw---- 1 root disk 9, 0 Jun 24 2004 /dev/st0
crw--w---- 1 root root 4, 0 Jun 24 2004 /dev/tty0

Partitions

For some block devices, such as floppy disks and CD or DVD discs, it is common to
use the whole media as a single filesystem. However, with large hard drives, and
even with smaller USB memory keys, it is more common to divide, or partition, the
available space into several different partitions.

Partitions can be different sizes, and different partitions may have different
filesystems on them, so a single disk can be used for many purposes, including
sharing it between multiple operating systems. For example, I use test systems with
several different Linux distributions and sometimes a Windows® system, all sharing
one or two hard drives.

You will recall from the 101 and 102 tutorials that hard drives have a geometry,
defined in terms of cylinders, heads, and sectors. Even though modern drives use
logical block addressing (LBA), which renders geometry largely irrelevant, the
fundamental allocation unit for partitioning purposes is still the cylinder.

Displaying partition information

Partition information is stored in a partition table on the disk. The table lists
information about the start and end of each partition, information about its type, and
whether it is marked bootable or not. To create and delete partitions, you edit the
partition table using a program specially designed for the job. For the LPI exam, you
need to know about the fdisk program, so that is what is covered here, although
several other tools exist.

The fdisk command with the -l option is used to list partitions. Add a device
name, such as /dev/hda, if you want to look at the partitions on a particular drive.
Note that partitioning tools require root access. Listing 2 shows the partitions on one
of my hard drives.

Listing 2. Listing partitions with fdisk
[root@lyrebird root]# fdisk -l /dev/hda

Disk /dev/hda: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 6 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2078 16691503+ 7 HPFS/NTFS
/dev/hda2 2079 3295 9775552+ c Win95 FAT32 (LBA)
/dev/hda3 3296 3422 1020127+ 83 Linux
/dev/hda4 3423 19457 128801137+ f Win95 Ext'd (LBA)
/dev/hda5 3423 3684 2104483+ 82 Linux swap
/dev/hda6 3685 6234 20482843+ 83 Linux
/dev/hda7 6235 7605 11012526 83 Linux
/dev/hda8 7606 9645 16386268+ 83 Linux
/dev/hda9 9646 12111 19808113+ 83 Linux
/dev/hda10 12112 15680 28667961 83 Linux
/dev/hda11 15681 19457 30338721 83 Linux

Notes:

1. The header information shows the disk size and geometry. Most large
disks using LBA have 255 heads per cylinder and 63 sectors per track,
making a total of 16065 sectors, or 8225280 bytes per cylinder.

2. In this example, the first primary partition (/dev/hda1) is marked bootable
(or active). As you saw in the tutorial for topic 102, this enables the
standard DOS PC master boot record to boot the partition. This flag has
no significance for the LILO or GRUB boot loaders.

3. The Start and End columns show the starting and ending cylinder for
each partition. These must not overlap and should generally be
contiguous, with no intervening space.

4. The Blocks column shows the number of 1K (1024 byte) blocks in the
partition. The maximum number of blocks in a partition is therefore half of
the product of the number of cylinders (End + 1 - Start) and the number of
sectors per cylinder. A trailing + sign indicates that not all sectors in the
partition are used.

5. The Id field indicates the intended use of the partition. Type 82 is a Linux
swap partition, and type 83 is a Linux data partition. There are
approximately 100 different partition types defined. This particular disk is
shared between several operating systems, including Windows/XP, hence
the presence of Windows NTFS (and FAT32) partitions.

Partitioning with fdisk

You have just seen how to display partition information using the fdisk command.
This command also provides an interactive environment for editing the partition table
to create or remove partitions.

Warnings

Before you start modifying partitions, there are some important things to remember.
You risk losing your existing data if you do not follow these guidelines.

1. Do not change partitions that are in use. Plan your actions and

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 56

http://www.ibm.com/legal/copytrade.shtml

execute them carefully.

2. Know your tool. The fdisk command does not commit any changes to
your disk until you tell it to. Other tools, including parted, may commit
changes as you go.

3. Back up important data before you start, as with any operation that
may cause data loss.

4. Partitioning tools write the partition table. Unless the tool you are using
also includes the ability to move, resize, format, or otherwise write to the
data area of your disk, your data will not be touched. If you do make an
accidental mistake, stop as quickly as possible and seek help. You may
still be able to recover your partitions and data.

Start fdisk

To start fdisk in interactive mode, simply give the name of a disk, such as /dev/hda
or /dev/sdb, as a parameter. The following example boots a Knoppix live CD. You
will need root authority, and you will see output similar to Listing 3.

Listing 3. Starting interactive fdisk
root@ttyp1[knoppix]# fdisk /dev/hda

The number of cylinders for this disk is set to 14593.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)

Command (m for help):

Most modern disks have more than 1024 cylinders, so you will usually see the
warning as shown in Listing 3. Type m to display a list of available one-letter
commands as shown in Listing 4.

Listing 4. Help in fdisk
Command action

a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition's system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)

Command (m for help):

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 8 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Use the p command to display the existing partition on this particular disk; Listing 5
shows the output.

Listing 5. Displaying the existing partition table
Disk /dev/hda: 120.0 GB, 120034123776 bytes
255 heads, 63 sectors/track, 14593 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2611 20972826 7 HPFS/NTFS

Command (m for help):

This particular disk is a 120GB disk with a Windows/XP partition of approximately
20GB. It is a primary partition, and it is marked bootable, as is typical for a Windows
system.

Our workstation layout

Let's now use part of the free space to set up a simple workstation with the following
additional partitions. In practice, it's unlikely that you would mix this many different
filesystem types, but we'll do it here for illustration purposes.

1. Another primary partition for our boot files. This will be mounted as /boot
and will contain kernel files and initial ramdisk files. If you use the GRUB
boot loader, GRUB files will also be located here. From the tutorial for
topic 102, our guideline is for approximately 100MB. We see from Listing
5 that a cylinder contains approximately 8MB of data, so we will use 13
cylinders for /boot. This will be /dev/hda2.

2. We will create an extended partition to house logical partitions spanning
the rest of the free space. This will be /dev/hda3.

3. We will create a 500MB swap partition as /dev/hda5. We will use 64
cylinders for this.

4. We will create a logical partition of approximately 20GB for our Linux
system. This will be /dev/hda6.

5. We will create a separate 10GB partition for user data. This will eventually
be mounted as /home. For now, it will simply be /dev/hda7.

6. Finally, we will create a small 2GB partition for sharing data between the
Linux and Windows systems. This will eventually be formatted as FAT32
(or vfat). This will be /dev/hda8.

Creating our partitions

Let's start by using the n command to create a new partition; see Listing 6.

Listing 6. Creating our first partition
Command (m for help): n

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 56

http://www.ibm.com/legal/copytrade.shtml

Command action
e extended
p primary partition (1-4)

p
Partition number (1-4): 2
First cylinder (2612-14593, default 2612):
Using default value 2612
Last cylinder or +size or +sizeM or +sizeK (2612-14593, default 14593): 2624

Command (m for help): p

Disk /dev/hda: 120.0 GB, 120034123776 bytes
255 heads, 63 sectors/track, 14593 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2611 20972826 7 HPFS/NTFS
/dev/hda2 2612 2624 104422+ 83 Linux

Command (m for help):

We took the default for the first cylinder and specified the value of 2624 for the last
cylinder, resulting in a 13-cylinder partition. You can see from Listing 6 that our
partition is, indeed, approximately 100MB in size. Since it is a primary partition, it
must be numbered from 1 through 4. It is a good idea to assign partition numbers
sequentially; some tools complain if this is not done.

Notice also that our new partition was assigned a type of 83, for a Linux data
partition. Think of this as an indicator to the operating system of the intended use of
the partition. The eventual use should match this, but at this point we don't even
have the partition formatted, let alone have any data on it.

We now create the extended partition, which is a container for the logical partitions
on the disk. We assign partition number 3 (/dev/hda3). The interaction and result is
shown in Listing 7. Note again that the partition type was assigned automatically.

Listing 7. Creating an extended partition
Command (m for help): n
Command action

e extended
p primary partition (1-4)

e
Partition number (1-4): 3
First cylinder (2625-14593, default 2625):
Using default value 2625
Last cylinder or +size or +sizeM or +sizeK (2625-14593, default 14593):
Using default value 14593

Command (m for help): p

Disk /dev/hda: 120.0 GB, 120034123776 bytes
255 heads, 63 sectors/track, 14593 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2611 20972826 7 HPFS/NTFS
/dev/hda2 2612 2624 104422+ 83 Linux
/dev/hda3 2625 14593 96140992+ 5 Extended

Command (m for help):

Now let's move on to creating a swap partition as a logical partition within our
extended partition. We will use a value of +64 (cylinders) for the last cylinder, rather
than performing the arithmetic ourselves. Note that this time we use the t command

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 10 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

to assign a type of 82 (Linux swap) to the newly created partition. Otherwise, it
would be another type 83 (Linux data) partition.

Listing 8. Creating a swap partition
Command (m for help): n
Command action

l logical (5 or over)
p primary partition (1-4)

l
First cylinder (2625-14593, default 2625):
Using default value 2625
Last cylinder or +size or +sizeM or +sizeK (2625-14593, default 14593): +64

Command (m for help): t
Partition number (1-5): 5
Hex code (type L to list codes): 82
Changed system type of partition 5 to 82 (Linux swap)

Command (m for help): p

Disk /dev/hda: 120.0 GB, 120034123776 bytes
255 heads, 63 sectors/track, 14593 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2611 20972826 7 HPFS/NTFS
/dev/hda2 2612 2624 104422+ 83 Linux
/dev/hda3 2625 14593 96140992+ 5 Extended
/dev/hda5 2625 2689 522081 82 Linux swap

Command (m for help):

Now let's define the main Linux partition and the /home partition. This time we will
simply specify sizes of +20480M and +10240M, indicating 20GB and 10GB,
respectively. We let fdisk calculate the number of cylinders for us. The results are
shown in Listing 9.

Listing 9. Creating our main Linux partition
Command (m for help): n
Command action

l logical (5 or over)
p primary partition (1-4)

l
First cylinder (2690-14593, default 2690):
Using default value 2690
Last cylinder or +size or +sizeM or +sizeK (2690-14593, default 14593): +20480M

Command (m for help): n
Command action

l logical (5 or over)
p primary partition (1-4)

l
First cylinder (5181-14593, default 5181):
Using default value 5181
Last cylinder or +size or +sizeM or +sizeK (5181-14593, default 14593): +10240M

Command (m for help): p

Disk /dev/hda: 120.0 GB, 120034123776 bytes
255 heads, 63 sectors/track, 14593 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2611 20972826 7 HPFS/NTFS
/dev/hda2 2612 2624 104422+ 83 Linux
/dev/hda3 2625 14593 96140992+ 5 Extended
/dev/hda5 2625 2689 522081 82 Linux swap
/dev/hda6 2690 5180 20008926 83 Linux

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 56

http://www.ibm.com/legal/copytrade.shtml

/dev/hda7 5181 6426 10008463+ 83 Linux

Command (m for help):

Our final partition is the FAT32 partition. We use the commands we have used
above to create /dev/hda8 using a size specification of +2048M, and then we change
the partition type to b (for a W95 FAT32 partition). Next we save all our work.

Saving our partition table

So far, we have just been doing an in-memory edit of a partition table. We could use
the q command to quit without saving changes. If something is not as we like, it, we
can use the d command to delete one or more partitions so we can redefine them. If
we are happy with our setup, we use the v command to verify our setup, and then
the w command to write the new partition table and exit. See Listing 10. If you run
fdisk -l again, you will see that Linux now knows about the new partitions. Unlike
in some operating systems, it is not always necessary to reboot to see the changes.
A reboot may be required if, for example, /dev/hda3 became /dev/hda2 because the
original /dev/hda2 was deleted. If a reboot is needed, fdisk should tell you to do
so.

Listing 10. Saving the partition table
Command (m for help): v
127186915 unallocated sectors

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
root@ttyp0[knoppix]# fdisk -l /dev/hda

Disk /dev/hda: 120.0 GB, 120034123776 bytes
255 heads, 63 sectors/track, 14593 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 2611 20972826 7 HPFS/NTFS
/dev/hda2 2612 2624 104422+ 83 Linux
/dev/hda3 2625 14593 96140992+ 5 Extended
/dev/hda5 2625 2689 522081 82 Linux swap
/dev/hda6 2690 5180 20008926 83 Linux
/dev/hda7 5181 6426 10008463+ 83 Linux
/dev/hda8 6427 6676 2008093+ b W95 FAT32

More on fdisk

You may notice that we did not change the bootable flag on any partition. As our
disk stands now, it still has the Windows Master Boot Record (MBR) and will
therefore boot the first primary partition that is marked bootable (the NTFS partition
in our example).

Neither LILO nor GRUB uses the bootable flag. If either of these is installed in the
MBR, then it can boot the Windows/XP partition. You could also install LILO or
GRUB into your /boot partition (/dev/hda2) and mark that partition bootable and
remove the bootable flag from /dev/hda1. Leaving the original MBR can be useful if

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 12 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the machine is later returned to being a Windows-only machine.

You have now seen one way to set up a Linux workstation. Other choices you might
make are covered later in this tutorial, under Finding and placing system files.

Filesystem types

Linux supports several different filesystems. Each has strengths and weaknesses
and its own set of performance characteristics. One important attribute of a
filesystem is journaling, which allows for much faster recovery after a system crash.
Generally, a journaling filesystem is preferred over a non-journaling one when you
have a choice. Following is a brief summary of the types you need to know about for
the LPI exam. See Resources for additional background information.

The ext2 filesystem

The ext2 filesystem (also known as the second extended filesystem) was developed
to address shortcomings in the Minix filesystem used in early versions of Linux. It
has been used extensively on Linux for many years. There is no journaling in ext2,
and it has largely been replaced by ext3.

The ext3 filesystem

The ext3 filesystem adds journaling capability to a standard ext2 filesystem and is
therefore an evolutionary growth of a very stable filesystem. It offers reasonable
performance under most conditions and is still being improved. Because it adds
journaling on top of the proven ext2 filesystem, it is possible to convert an existing
ext2 filesystem to ext3 and even convert back again if required.

The ReiserFS filesystem

ReiserFS is a B-tree-based filesystem that has very good overall performance,
particularly for large numbers of small files. ReiserFS also scales well and has
journaling.

The XFS filesystem

XFS is a filesystem with journaling. It comes with robust features and is optimized for
scalability. XFS aggressively caches in-transit data in RAM, so an uninterruptible
power supply is recommended if you use XFS.

The swap filesystem

Swap space must be formatted for use as swap space, but it is not generally
considered a filesystem, otherwise.

The vfat filesystem

This filesystem (also known as FAT32) is not journaled and lacks many features
required for a full Linux filesystem implementation. It is useful for exchanging data

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 56

http://www.ibm.com/legal/copytrade.shtml

between Windows and Linux systems as it can be read by both Windows and Linux.
Do not use this filesystem for Linux, except for sharing data between Windows and
Linux. If you unzip or untar a Linux archive on a vfat disk, you will lose permissions,
such as execute permission, and you will lose any symbolic links that may have
been stored in the archive.

Both ext3 and ReiserFS are mature and used as the default filesystem on a number
of distributions. These are recommended for general use.

Creating filesystems

Linux uses the mkfs command to create filesystems and mkswapcommand to make
swap space. The mkfs command is actually a front end to several
filesystem-specific commands such as mkfs.ext3 for ext3 and mkfs.reiserfs
for ReiserFS.

What filesystem support is already installed on your system? Use the
ls /sbin/mk* command to find out. An example is shown in Listing 11.

Listing 11. Filesystem creation commands
root@ttyp0[knoppix]# ls /sbin/mk*
/sbin/mkdosfs /sbin/mkfs.ext2 /sbin/mkfs.msdos /sbin/mkraid
/sbin/mke2fs /sbin/mkfs.ext3 /sbin/mkfs.reiserfs /sbin/mkreiserfs
/sbin/mkfs /sbin/mkfs.jfs /sbin/mkfs.vfat /sbin/mkswap
/sbin/mkfs.cramfs /sbin/mkfs.minix /sbin/mkfs.xfs

You will notice various forms of some commands. For example, you will usually find
that the files mke2fs, mkfs.ext2 and mkfs.ext3 are identical, as are mkreiserfs and
mkfs.reiserfs.

There are a few common options for all mkfs commands. Options that are specific
to the type of filesystem being created are passed to the appropriate creation
command, based on the type of filesystem specified in the -type option. Our
examples use mkfs -type, but you may use the other forms directly with equal
effect. For example, you may use mkfs -type reiserfs, mkreiserfs, or
mkfs.reiserfs. For the manual pages for a specific filesystem, use the
appropriate mkfs command as the name, for example, man mkfs.reiserfs.
Many of the values displayed in the output examples below can be controlled by
options to mkfs.

Creating an ext3 filesystem

Listing 12. Creating an ext3 filesystem
root@ttyp0[knoppix]# mkfs -t ext3 /dev/hda8
mke2fs 1.35 (28-Feb-2004)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
251392 inodes, 502023 blocks
25101 blocks (5.00%) reserved for the super user
First data block=0
16 block groups

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 14 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

32768 blocks per group, 32768 fragments per group
15712 inodes per group
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 32 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

A useful option for ext2 and ext3 filesystems is the -L option with a name, which
assigns a label to the partition. This can be used instead of the device name when
mounting filesystems; it provides some level of insulation against changes that may
need to be reflected in various control files. To display or set a label for an existing
ext2 or ext3 filesystem, use the e2label command. Labels are limited to a
maximum size of 16 characters.

Note that a journal is created with ext3. If you wish to add a journal to an existing
ext2 system, use the tune2fs command with the -j option.

Creating a ReiserFS filesystem

Listing 13. Creating a ReiserFS filesystem
.root@ttyp0[knoppix]# mkfs -t reiserfs /dev/hda6
mkfs.reiserfs 3.6.17 (2003 www.namesys.com)

A pair of credits:
Many persons came to www.namesys.com/support.html, and got a question answered
for $25, or just gave us a small donation there.

Jeremy Fitzhardinge wrote the teahash.c code for V3. Colin Plumb also
contributed to that.

Guessing about desired format. Kernel 2.4.26 is running.
Format 3.6 with standard journal
Count of blocks on the device: 5002224
Number of blocks consumed by mkreiserfs formatting process: 8364
Blocksize: 4096
Hash function used to sort names: "r5"
Journal Size 8193 blocks (first block 18)
Journal Max transaction length 1024
inode generation number: 0
UUID: 72e317d6-8d3a-45e1-bcda-ad7eff2b3b40
ATTENTION: YOU SHOULD REBOOT AFTER FDISK!

ALL DATA WILL BE LOST ON '/dev/hda6'!
Continue (y/n):y
Initializing journal - 0%....20%....40%....60%....80%....100%
Syncing..ok

Tell your friends to use a kernel based on 2.4.18 or later, and especially not a
kernel based on 2.4.9, when you use reiserFS. Have fun.

ReiserFS is successfully created on /dev/hda6.

You can label a ReiserFS system using the -l (or --labeloption with a name).
You can use the reiserfstune command to add a label or display the label on an
existing ReiserFS filesystem. Labels are limited to a maximum size of 16 characters.

Creating an XFS filesystem

Listing 14. Creating an XFS filesystem
root@ttyp0[knoppix]# mkfs -t xfs /dev/hda7

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 56

http://www.ibm.com/legal/copytrade.shtml

meta-data=/dev/hda7 isize=256 agcount=16, agsize=156382 blks
= sectsz=512

data = bsize=4096 blocks=2502112, imaxpct=25
= sunit=0 swidth=0 blks, unwritten=1

naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=2560, version=1

= sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

You can label an XFS system using the -L option with a name. You can use the
xfs_admin command with the -L option to add a label to an existing XFS
filesystem. Use the -l option of xfs_admin to display a label. Unlike ext2, ext3 and
ReiserFS, labels are limited to a maximum size of 12 characters.

Creating a vfat filesystem

Listing 15. Creating a vfat filesystem
root@ttyp0[knoppix]# mkfs -t vfat /dev/hda8
mkfs.vfat 2.10 (22 Sep 2003)

Label a FAT32 filesystems using the -n (for volume name) option. The e2label
command will display or set the label on vfat as well as ext partitions. Labels on
FAT32 are limited to a maximum size of 16 characters.

Creating swap space

Listing 16. Creating swap space
root@ttyp0[knoppix]# mkswap /dev/hda5
Setting up swapspace version 1, size = 534605 kB

Unlike regular filesystems, swap partitions aren't mounted. Instead, they are enabled
using the swapon command. Your Linux system's startup scripts will take care of
automatically enabling your swap partitions.

Other tools and filesystems

The following tools and filesystems are not part of the LPI objectives for this exam.
This very brief overview touches on some of the tools and filesystems that you may
encounter.

Partitioning tools

Many Linux distributions include the cfdisk and sfdisk commands. The cfdisk
command provides a more graphical interface than fdisk, using the ncurses library
functions as shown in Figure 1. The sfdisk command is intended for programmer
use and can be scripted. Use it only if you know what you are doing.

Figure 1. Using cfdisk

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 16 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Another popular tool for working with the partition table is parted, which can resize
and format many partition types as well as create and destroy them. While parted
cannot resize NTFS partitions, ntfsresize can. The qtparted tool uses the Qt
toolkit to provide a graphical interface. It includes the parted functions as well as
ntfsresize functions.

The gparted tool is another graphical partitioning tool, designed for the GNOME
desktop. It uses the GTK+GUI library, and is shown in Figure 2. (See Resources for
links to both qtparted and gparted.)

Figure 2. Using gparted

Several commercial partitioning tools are available. Perhaps the best known one is
PartitionMagic, now sold by Symantec.

Many distributions allow you to partition your disk, and sometimes shrink an existing
Windows NTFS or FAT32 partition, as part of the installation process. Consult the

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 56

http://www.ibm.com/legal/copytrade.shtml

installation documentation for your distribution.

Logical volume manager

The logical volume manager (or LVM) for Linux allows you to combine multiple
physical storage devices into a single volume group. For example, you might add a
partition to an existing volume group, rather than having to carve out contiguous
space large enough for your desired filesystem.

RAID

RAID (Redundant Array of Independent Disks) is a technology for providing a
reliable data storage using low-cost disks that are much less expensive than the
disks found on high-end systems. There are several different types of RAID, and
RAID may be implemented in hardware or software. Linux supports both hardware
and software RAID.

More filesystems

You will probably encounter filesystems besides those discussed above.

IBM's Journaled File System (JFS), currently used in IBM enterprise servers, is
designed for high-throughput server environments. It is available for Linux and is
included in several distributions. To create JFS filesystems, use the mkfs.jfs
command.

There are other filesystems too, such as the cramfs filesystem often used on
embedded devices.

The next section shows you how to maintain integrity on filesystems and what to do
when things go wrong.

Section 3. Filesystem integrity

This section covers material for topic 1.104.2 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 3.

In this section, you learn how to:

• Monitor free space and inodes

• Verify the integrity of filesystems

• Repair simple filesystem problems

Both standard and journaling filesystems are covered. The emphasis is on ext2 and
ext3, but the tools for other filesystems are mentioned as well. Most of this material

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 18 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

applies to both 2.4 and 2.6 kernels. The examples in this section mostly use Ubuntu
5.10 "Breezy Badger" (a distribution based on Debian), with a 2.6.12 kernel, which
was installed on the filesystems we created in the previous section. Your results on
other systems are likely to differ.

Monitoring free space

First, a review. In the tutorial for topic 103, "LPI exam 101 prep: GNU and UNIX
commands," you learned that a file or directory is contained in a collection of blocks,
and information about the file or directory is contained in an inode.

Both the data blocks and the inode blocks take space on filesystems, so you need to
monitor the space usage to ensure that your filesystems have space for growth.

df

df displays information about mounted filesystems. (You will learn more about
mounting filesystems in the next section, Mounting and unmounting filesystems). If
you add the -T option, then the filesystem type is included in the display; otherwise,
it is not. The output from df for the Ubuntu system that we installed on the
filesystems created in the previous section is shown in Listing 17.

Listing 17. Displaying filesystem usage
ian@pinguino:~$ df -T
Filesystem Type 1K-blocks Used Available Use% Mounted on
/dev/hda6 reiserfs 20008280 1573976 18434304 8% /
tmpfs tmpfs 1034188 0 1034188 0% /dev/shm
tmpfs tmpfs 1034188 12588 1021600 2% /lib/modules/2.6.12-10-386/volatile
/dev/hda2 ext3 101105 19173 76711 20% /boot
/dev/hda8 vfat 2004156 8 2004148 1% /dos
/dev/hda7 xfs 9998208 3544 9994664 1% /home
/dev/hda1 ntfs 20967416 9594424 11372992 46% /media/hda1

You will notice that the output includes the total number of blocks as well as the
number used and free. You will also notice the filesystem, such as /dev/hda7, and its
mount point: /home for /dev/hda7. The two tmpfs entries are for virtual memory
filesystems. These exist only in RAM or swap space and are created when mounted
without need for a mkfs command. You can read more about tmpfs in "Common
threads: Advanced filesystem implementor's guide, Part 3" (see Resources for a
link).

If you want specific information on inode usage, use the -i option on the df
command. You can exclude certain filesystem types using the -x option or restrict
information to just certain filesystem types using the -t option. Use these multiple
time if necessary. See the examples in Listing 18.

Listing 18. Displaying inode usage
ian@pinguino:~$ df -i -x tmpfs
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/hda6 0 0 0 - /
/dev/hda2 26208 34 26174 1% /boot
/dev/hda8 0 0 0 - /dos
/dev/hda7 10008448 176 10008272 1% /home

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 56

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

/dev/hda1 37532 36313 1219 97% /media/hda1
ian@pinguino:~$ df -iT -t vfat -t ext3
Filesystem Type Inodes IUsed IFree IUse% Mounted on
/dev/hda2 ext3 26208 34 26174 1% /boot
/dev/hda8 vfat 0 0 0 - /dos

Perhaps you are not surprised to see that the FAT32 filesystem does not have
inodes, but it may surprise you to see that the ReiserFS information shows no
inodes. ReiserFS keeps metadata for files and directories in stat items. And since
ReiserFS uses a balanced tree structure, there is no predetermined number of
inodes as there are, for example, in ext2, ext3, or xfs filesystems.

There are several other options you may use with df to limit the display to local
filesystems or control the format of output. For example, use the -H option to display
human readable sizes, such as 1K for 1024, or use the -h (or --si) option to get
sizes in powers of 10 (1K=1000).

If you aren't sure which filesystem a particular part of your directory tree lives on, you
can give the df command a parameter of a directory name or even a filename as
shown in Listing 19.

Listing 19. Human readable output for df
ian@pinguino:~$ df --si ~ian/index.html
Filesystem Size Used Avail Use% Mounted on
/dev/hda7 11G 3.7M 11G 1% /home

du

The df command gives information about only a whole filesystem. Sometimes you
might want to know how much space is used by your home directory, or how big a
partition you would need if you wanted to move /usr to its own filesystem. To answer
this kind of question, use the ducommand.

The du command displays information about the filename (or filenames) given as
parameters. If a directory name is given, then du recurses and calculates sizes for
every file and subdirectory of the given directory. The result can be a lot of output.
Fortunately, you can use the -s option to request just a summary for a directory. If
you use du to get information for multiple directories, then add the -c option to get a
grand total. You can also control output format with the same set of size options (-h,
-H, --si, and so on) that are used for df. Listing 20 shows two views of my home
directory on the newly installed Ubuntu system.

Listing 20. Using du
ian@pinguino:~$ du -hc *
0 Desktop
16K index.html
16K total
ian@pinguino:~$ du -hs .
3.0M .

The reason for the difference between the 16K total from du -c * and the 3M
summary from du -s is that the latter includes the entries starting with a dot, such
as .bashrc, while the former does not.

One other thing to note about du is that you must be able to read the directories that

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 20 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

you are running it against.

So now, let's use du to display the total space used by the /usr tree and each of its
first-level subdirectories. The result is shown in Listing 21. Use root authority to
make sure you have appropriate access permissions.

Listing 21. Using du on /usr
root@pinguino:~# du -shc /usr/*
66M /usr/bin
0 /usr/doc
1.3M /usr/games
742K /usr/include
0 /usr/info
497M /usr/lib
0 /usr/local
7.3M /usr/sbin
578M /usr/share
0 /usr/src
14M /usr/X11R6
1.2G total

Checking filesystems

Sometimes your system may crash or lose power. In these cases, Linux will not be
able to cleanly unmount your filesystems, and they may be left in an inconsistent
state, with some changes completed and some not. Operating with a damaged
filesystem is not a good idea as you are likely to further compound any existing
errors.

The main tool for checking filesystems is fsck, which, like mkfs, is really a front end
to filesystem checking routines for the various filesystem types. Some of the
underlying check routines are shown in Listing 22.

Listing 22. Some of the fsck programs
ian@pinguino:~$ ls /sbin/*fsck*
/sbin/dosfsck /sbin/fsck.ext3 /sbin/fsck.reiser4 /sbin/jfs_fscklog
/sbin/e2fsck /sbin/fsck.jfs /sbin/fsck.reiserfs /sbin/reiserfsck
/sbin/fsck /sbin/fsck.minix /sbin/fsck.vfat
/sbin/fsck.cramfs /sbin/fsck.msdos /sbin/fsck.xfs
/sbin/fsck.ext2 /sbin/fsck.nfs /sbin/jfs_fsck

The system boot process use fsck to check the root filesystem and any other
filesystems that are specified in the /etc/fstab control file. If the filesystem was not
cleanly unmounted, a consistency check is performed. This is controlled by the pass
(or passno) field (the sixth field) of the /etc/fstab entry. Filesystems with pass set to
zero are not checked at boot time. The root filesystem has a pass value of 1 and is
checked first. Other filesystems will usually have a pass value of 2 (or higher),
indicating the order in which they should be checked. Multiple fsck operations can
run in parallel, so different filesystems are allowed to have the same pass value, as
is the case for our example /boot and /home filesystems.

Listing 23. Boot checking of filesystems with fstab entries
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/hda6 / reiserfs defaults 0 1

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 56

http://www.ibm.com/legal/copytrade.shtml

/dev/hda2 /boot ext3 defaults 0 2
/dev/hda8 /dos vfat defaults 0 0
/dev/hda7 /home xfs defaults 0 2

Note that some journaling filesystems, such as ReiserFS and xfs, might have a pass
value of 0 because the journaling code, rather than fsck, does the filesystem
consistency check and repair.

Repairing filesystems

If the automatic boot time check of filesystems is unable to restore consistency, you
are usually dumped into a single user shell with some instructions to run fsck
manually. For an ext2 filesystem, which is not journaled, you may be presented with
a series of requests asking you to confirm proposed actions to fix particular blocks
on the filesystem. You should generally allow fsck to attempt to fix problems, by
responding y (for yes). When the system reboots, check for any missing data or
files.

If you suspect corruption, or want to run a check manually, most of the checking
programs require the filesystem to be unmounted first. Since you can't unmount the
root filesystem on a running system, the best you can do is drop to single user mode
(using telinit 1) and then remount the root filesystem read-only, at which time
you should be able to perform a consistency check. (Mounting filesystems is
covered in the next section; Mounting and unmounting filesystems.) A better way to
check a filesystem is to boot a recovery system, such as a live CD or a USB memory
key, and perform the check of your unmounted filesystems from that.

Why journal?

An fsck scan of an ext2 disk can take quite a while to complete, because the
internal data structure (or metadata) of the filesystem must be scanned completely.
As filesystems get larger and larger, this takes longer and longer, even though disks
also keep getting faster, so a full check may take one or more hours.

This problem was the impetus for journaled or journaling filesystems. Journaled
filesystems keep a log of recent changes to the filesystem metadata. After a crash,
the filesystem driver inspects the log in order to determine which recently changed
parts of the filesystem may possibly have errors. With this design change, checking
a journaled filesystem for consistency typically takes just a matter of seconds,
regardless of filesystem size. Furthermore, the filesystem driver will usually check
the filesystem on mounting, so an external fsck check is generally not required. In
fact, for the xfs filesystem, fsck does nothing!

If you do run a manual check of a filesystem, check the man pages for the
appropriate fsck command (fsck.ext3, e2fsck , reiserfsck, and so on) to
determine the appropriate parameters. Some examples are in Listing 24, using a
Ubuntu live CD image to run the fsck commands.

Listing 24. Running fsck manually
root@ubuntu:~# fsck -p /dev/hda6
fsck 1.38 (30-Jun-2005)

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 22 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Reiserfs super block in block 16 on 0x306 of format 3.6 with standard journal
Blocks (total/free): 5002224/4608416 by 4096 bytes
Filesystem is clean
Replaying journal..
Reiserfs journal '/dev/hda6' in blocks [18..8211]: 0 transactions replayed
Checking internal tree..finished
root@ubuntu:~# fsck -p /dev/hda2
fsck 1.38 (30-Jun-2005)
BOOT: clean, 34/26208 files, 22488/104420 blocks
root@ubuntu:~# fsck -p /dev/hda7
fsck 1.38 (30-Jun-2005)
root@ubuntu:~# fsck -a /dev/hda8
fsck 1.38 (30-Jun-2005)
dosfsck 2.11, 12 Mar 2005, FAT32, LFN
/dev/hda8: 1 files, 2/501039 clusters

Advanced tools

There are several more advanced tools that you can use to examine or repair a
filesystem. Check the man pages for the correct usage and the Linux Documentation
Project (see Resources) for how-to information. Almost all of these commands
require a filesystem to be unmounted, although some functions can be used on
filesystems that are mounted read-only. A few of the commands are described
below.

You should always back up your filesystem before attempting any repairs.

Tools for ext2 and ext3 filesystems

tune2fs
Adjusts parameters on ext2 and ext3 filesystems. Use this to add a journal to
an ext2 system, making it an ext3 system, as well as display or set the
maximum number of mounts before a check is forced. You can also assign a
label and set or disable various optional features.

dumpe2fs
Prints the super block and block group descriptor information for an ext2 or
ext3 filesystem.

debugfs
Is an interactive file system debugger. Use it to examine or change the state of
an ext2 or ext3file system.

Tools for Reiserfs filesystems

reiserfstune
Displays and adjusts parameters on ReiserFS filesystems.

debugreiserfs
Performs similar functions to dumpe2fs and debugfs for ReiserFS filesystems.

Tools for XFS filesystems

xfs_info
Displays XFS filesystem information.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 56

http://www.ibm.com/legal/copytrade.shtml

xfs_growfs
Expands an XFS filesystem (assuming another partition is available).

xfs_admin
Changes the parameters of an XFS filesystem.

xfs_repair
Repairs an XFS filesystem when the mount checks are not sufficient to repair
the system.

xfs_db
Examines or debugs an XFS filesystem.

Section 4. Mounting and unmounting filesystems

This section covers material for topic 1.104.3 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 3.

In this section, you learn how to:

• Mount filesystems

• Unmount filesystems

• Configure filesystem mounting on bootup

• Configure user-mountable, removable filesystems such as tape drives,
floppies, and CDs

Mounting filesystems

The Linux filesystem is one big tree rooted at /, and yet we have filesystems on
different devices and partitions. Now we resolve this apparent incongruity. The root
(/) filesystem is mounted as part of the initialization process. Each of the other
filesystems that we have created is not usable by your Linux system until it is
mounted at a mount point.

A mount point is simply a directory in the current set of mounted filesystems at which
point the filesystem on a device is grafted into the tree. Mounting is the process of
making the filesystem on the device part of your accessible Linux filesystem. For
example, you might mount filesystems on hard drive partitions as /boot, /tmp, or
/home, and you might mount the filesystem on a floppy drive as /mnt/floppy and the
filesystem on a CD-ROM as /media/cdrom1.

Besides filesystems on partitions, floppy disks, and CDs, there are other types of
filesystems. We alluded briefly to the tmpfs filesystem, which is a virtual memory

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 24 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

filesystem. It is also possible to mount filesystems from one system on another
system using a networked filesystem such as NFS or AFS. You can also create a file
in an existing filesystem and format that as a, possibly different, kind of filesystem
and mount that too.

While the mount process actually mounts the filesystem on some device (or other
resource), it is common to simply say that you "mount the device", which is
understood to mean "mount the filesystem on the device".

The basic form of the mount command takes two parameters: the device (or other
resource) containing the filesystem to be mounted, and the mount point. For
example, we mount our FAT32 partition /dev/hda8 at the mount point /dos as shown
in Listing 25.

Listing 25. Mounting /dos
root@pinguino:~# mount /dev/hda8 /dos

The mount point must exist before you mount anything over it. When you do, the
files on the filesystem you are mounting become the files and subdirectories of the
mount point. If the mount point directory already contained files or subdirectories,
they are no longer visible until the mounted filesystem is unmounted, at which point
they become visible again. It is a good idea to avoid this problem by using only
empty directories as mount points.

After mounting a filesystem, any files or directories created or copied to the mount
point or any directory below it will be created on the mounted filesystem. So a file
such as /dos/sampdir/file.txt will be created on the FAT32 filesystem that we
mounted at /dos in our example.

Usually, the mount command will automatically detect the type of filesystem being
mounted. Occasionally you may need to specify the filesystem type explicitly using
the -t option as shown in Listing 26.

Listing 26. Mounting with explicit filesystem type
root@pinguino:~# mount -t vfat /dev/hda8 /dos

To see what filesystems are mounted, use the mount command with no parameters.
Listing 27 shows our example system.

Listing 27. Displaying mounted filesystems
/dev/hda6 on / type reiserfs (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
usbfs on /proc/bus/usb type usbfs (rw)
tmpfs on /lib/modules/2.6.12-10-386/volatile type tmpfs (rw,mode=0755)
/dev/hda2 on /boot type ext3 (rw)
/dev/hda8 on /dos type vfat (rw)
/dev/hda7 on /home type xfs (rw)
/dev/hda1 on /media/hda1 type ntfs (rw)
tmpfs on /dev type tmpfs (rw,size=10M,mode=0755)

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 56

http://www.ibm.com/legal/copytrade.shtml

You can also view similar information by displaying /proc/mounts or /etc/mtab, both
of which contain information about mounted filesystems.

Mount options

The mount command has several options that override the default behavior. For
example, you can mount a filesystem read-only by specifying -o ro. If the
filesystem is already mounted, add remount as shown in Listing 28.

Listing 28. Remounting read-only
root@pinguino:~# mount -o remount,ro /dos

Notes:

• Separate multiple options with commas.

• When remounting an already mounted filesystem, it suffices to specify
either the mount point or the device name. It is not necessary to specify
both.

• You cannot mount a read-only filesystem as read-write. Media that cannot
be modified, such as CD-ROM discs, will automatically be mounted
read-only.

• To remount a writable device read-write, specify -o remount,rw

Remount commands will not complete successfully if any process has open files or
directories in the filesystem being remounted. Use the lsof command to determine
what files are open. Check the man pages to learn about additional mount options
and lsof.

fstab

In the tutorial for topic 102, "LPI exam 101 prep (topic 102)d: Linux installation and
package management," you learned how to use the root= parameter in both GRUB
and LILO to tell the boot loader what filesystem should be mounted as root. Once
this filesystem is mounted, the initialization process runs mount with the -a option to
automatically mount a set of filesystems. The set is specified in the file /etc/fstab.
Listing 29 shows /etc/fstab for the sample Ubuntu system that we installed using the
filesystems created earlier in this tutorial.

Listing 29. An example fstab
root@pinguino:~# cat /etc/fstab
/etc/fstab: sttic file system information.
#
#<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/hda6 / reiserfs defaults 0 1
/dev/hda2 /boot ext3 defaults 0 2
/dev/hda8 /dos vfat defaults 0 0
/dev/hda7 /home xfs defaults 0 2

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 26 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/legal/copytrade.shtml

/dev/hda1 /media/hda1 ntfs defaults 0 0
/dev/hda5 none swap sw 0 0
/dev/hdc /media/cdrom0 udf,iso9660 user,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto 0 0

Lines starting with a # character are comments. Remaining lines contain six fields.
Since the fields are positional, they must all be specified.
file system

For the examples used so far, this will be a device name such as /dev/hda1.

mount point
This is the mount point we discussed in Mounting filesystems above. For swap
space, this should be the value none. For ext2, ext3, and xfs filesystems, you
may also specify a label such as LABEL=XFSHOME. This makes your system
more robust when devices are added or removed.

type
Specifies the type of filesystem. CD/DVD drives will often support either
ISO9660 or UDF filesystems, so you may specify multiple possibilities in a
comma-separated list. If you want mount to automatically determine the type,
specify auto as is done in the last line for the floppy drive.

option
Specifies the mount options. Specify defaults if you want default mount
options. Some options you will want to know about are:

• rw and ro specify whether the filesystem should be mounted read-write
or read-only.

• noauto specifies that this filesystem should not be automatically
mounted at boot time or whenever mount -a is issued. In our example,
this is done for the removable drives.

• user

• Specifies that a non-root user is permitted to mount and unmount the
filesystem. This is especially useful for removable media. This option
must be specified in /etc/fstab rather than on the mount command.

• exec and noexec specify whether or not to allow execution of files from
the mounted filesystem. User-mounted filesystems default to noexec
unless exec is specified after user.

• noatime will disable recording of access times. Not using access times
may improve performance.

dump
Specifies whether the dump command should consider this ext2 or ext3
filesystem for backups. A value of 0 tells dump to ignore this filesystem.

pass
Non-zero values of pass specify the order of checking filesystems at boot time,
as discussed in Checking filesystems.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 56

http://www.ibm.com/legal/copytrade.shtml

For filesystems that are listed in /etc/fstab, it suffices to give either the device name
or the mount point when mounting the filesystem. You do not need to give both.

Consult the man pages for fstab and mount for additional information, including
options not covered here.

Unmounting filesystems

All mounted filesystems are usually unmounted automatically by the system when it
is rebooted or shut down. When a filesystem is unmounted, any cached filesystem
data in memory is flushed to the disk.

You may also unmount filesystems manually. Indeed, you should do this when
removing writable media such as diskettes or USB drives or memory keys. Before
unmounting a filesystem, make sure that there are no processes running that have
open files on the filesystem. Then, use the umount command, specifying either the
device name or mount point as an argument. Some successful and unsuccessful
examples are shown in Listing 30.

Listing 30. Unmounting filesystems
root@pinguino:~# lsof /dos
root@pinguino:~# umount /dos
root@pinguino:~# mount /dos
root@pinguino:~# umount /dev/hda8
root@pinguino:~# umount /boot
umount: /boot: device is busy
umount: /boot: device is busy
root@pinguino:~# lsof /boot
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
klogd 6498 klog 1r REG 3,2 897419 6052 /boot/System.map-2.6.12-10-386

After a filesystem is unmounted, any files in the directory used for the mount point
are visible again.

Swap space

You may have noticed in the discussion of fstab above that swap space does not
have a mount point. The boot process usually enables swap space defined in
/etc/fstab unless the noauto option is specified. To manually control swap space on
a running system -- for example, if you added a new swap partition -- use the
swapon and swapoff commands. See the man pages for details.

You can view the currently enabled swap devices with cat /proc/swaps.

Section 5. Disk quotas

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 28 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This section covers material for topic 1.104.4 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 3.

In this section, you learn how to:

• Enable quotas

• Set quota limits

• Check quotas

• Generate quota reports

Quotas allow you to control disk usage by user or by group. Quotas prevent
individual users and groups from using a larger portion of a filesystem than they are
permitted, or from filling it up altogether. Quotas must be enabled and managed by
the root user. They are often used on multi-user systems, but less often on
single-user workstations.

Enabling quotas

Quotas require kernel support. Generally, a recent 2.4 or 2.6 kernel should have all
the support you need. Earlier versions may have incomplete quota support, requiring
you to build your own kernel. In current implementations you will probably find quota
support implemented as kernel modules. There are three different types of quota
support; vfsold (version 1 quota), vfsv0 (version 2 quota), and xfs (quota on XFS
filesystems). This section covers version 2 quota on non-XFS filesystems and xfs
quota on XFS filesystems.

The first step to enable quotas is to add the usrquota, or grpquota options to the
filesystem definitions in /etc/fstab, according to whether you want to implement user
quotas, group quotas, or both. Suppose you want to add both types of quota to the
XFS filesystem used for home directories in our example and also to the /boot
filesystem so you can see how it works on two different filesystems. Do this as
shown in Listing 31.

Listing 31. Enabling quota support in /etc/fstab
/dev/hda2 /boot ext3 defaults,usrquota,grpquota 0 2
/dev/hda7 /home xfs defaults,usrquota,grpquota 0 2

For XFS filesystems, quota data is considered part of the filesystem metadata. For
other filesystems, user quota information is stored in the aquota.user file in the root
of the filesystem, and group quota is similarly stored in aquota.group. Version 1
quotas used quota.user and quota.group.

After you edit /etc/fstab and add quotas, you need to remount the filesystems and,
for non-XFS filesystems, create the quota files and enable quota checking. The
quotacheck command checks the quotas on all filesystems and creates the
required aquota.user and aquota.group files if they do not exist. It can also repair

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 56

http://www.ibm.com/legal/copytrade.shtml

damaged quota files. See the man pages for more information. The quotaon
command turns on quota checking. Listing 32 shows an example. The following
options are used on both commands:
-a

For all filesystems in /etc/fstab that are enabled for automount

-u
For user quotas (this is the default)

-g
For group quotas

-v
For verbose output

Listing 32. Creating quota files and turning quota on
root@pinguino:~# quotacheck -augv
quotacheck: Scanning /dev/hda2 [/boot] quotacheck: Cannot stat old user quota
file: No such file or directory
quotacheck: Cannot stat old group quota file: No such file or directory
quotacheck: Cannot stat old user quota file: No such file or directory
quotacheck: Cannot stat old group quota file: No such file or directory
done
quotacheck: Checked 4 directories and 23 files
quotacheck: Old file not found.
quotacheck: Old file not found.
quotacheck: Skipping /dev/hda7 [/home]
root@pinguino:~# quotaon -ugva
/dev/hda2 [/boot]: group quotas turned on
/dev/hda2 [/boot]: user quotas turned on

Checking quotas on boot

The quotacheck and quotaon commands are usually included in initialization
scripts so that quotas are enabled whenever you reboot the system. The Quota Mini
HOWTO (see Resources for a link) has additional information.

The quotaoff command disables quotas, should you ever need to do so.

Setting quota limits

As you have seen, quotas are controlled either through binary files in the root of the
filesystem or through filesystem metadata. In order to set a quota for a particular
user, use the edquota command. This command extracts the quota information for
the user from the various filesystems with quotas enabled, creates a temporary file,
and opens an editor for you to adjust the quotas. See the man pages for edquota to
find out which editor is used. You must be root to edit quotas. The information
displayed will look something like Listing 33.

Listing 33. Running edquota
Disk quotas for user ian (uid 1000):
Filesystem blocks soft hard inodes soft hard
/dev/hda2 0 0 0 0 0 0

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 30 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

/dev/hda7 2948 0 0 172 0 0

As you can see, edquota displays my current usage of both 1K blocks and inodes
on each of the filesystems that have quota turned on. There are also soft and hard
limits for both block and inode usage. In this example, these are 0, meaning no
quota limit is enforced.

The soft limit is the value at which a user will receive e-mail warnings about being
over quota. The hard limit is the value that a user may not exceed. You can think of
block limits as a limit on the amount of data that a user may store, and inode limits
as a limit on the number of files and directories.

Changing quota limits

You change the quota limits by changing the values in the temporary file and then
saving the file. Quit the file without saving if you do not want to make changes.
Assume you want to set my quota to 10MB of data and 1000 files on the /home
filesystem. Allowing 10% additional for hard limits, you would set values as in Listing
34.

Listing 34. Setting limits
Disk quotas for user ian (uid 1000):
Filesystem blocks soft hard inodes soft hard
/dev/hda2 0 0 0 0 0 0
/dev/hda7 2948 10240 11264 172 1000 1100

Save the file, and the new quotas will take effect. In this example, no changes were
made to the quota for user ian on the /boot filesystem, since ian cannot write to this
filesystem. Note also that any changes you make to the used blocks or inodes
values will be ignored.

Copying quotas

Now suppose you are creating ids for people enrolled in a class. Assume you have
users gretchen, tom, and greg and you'd like them all to have the same quota as ian.
You do this using the -p option of edquota, which uses the quota values of ian as a
prototype for those of the other users as shown in Listing 35.

Listing 35. Setting quotas from a prototype
root@pinguino:~# edquota -p ian gretchen tom greg

Group limits

You can also use edquota to restrict the allocation of disk space based on the
group ownership of files. For example, the three class attendees above are set up in
primary group xml-101. To limit the total amounts used by the all members of the
group to 25MB and 2500 files, use the command edquota -q xml-101 and set
the values as shown in Listing 36.

Listing 36. Setting quotas for a group
Disk quotas for group xml-101 (gid 1001):
Filesystem blocks soft hard inodes soft hard

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 31 of 56

http://www.ibm.com/legal/copytrade.shtml

/dev/hda2 0 0 0 0 0 0
/dev/hda7 28 25600 28160 10 2500 2750

The grace period

Users may exceed their soft limit for a grace period, which defaults to 7 days. After
the grace period, the soft limit is enforced as a hard limit. Set grace periods with the
-y option of edquota. Again, you will be placed in an editor with data similar to that
of Listing 37. As before, save changes to update the values. Be sure to leave your
users enough time to receive their warning e-mail and delete some files.

Listing 37. Setting grace periods
Grace period before enforcing soft limits for users:
Time units may be: days, hours, minutes, or seconds
Filesystem Block grace period Inode grace period
/dev/hda2 7days 7days
/dev/hda7 7days 7days

Checking quotas

The quota command with no options displays the quotas for the invoking user on
any filesystems for which the user has quotas set. The -v option displays the
information for all filesystems that have quota enabled. The root user may also add a
user name to the command to view quotas for a particular user. These commands
are shown in Listing 38.

Listing 38. Displaying quotas
root@pinguino:~# quota
Disk quotas for user root (uid 0): none
root@pinguino:~# quota -v
Disk quotas for user root (uid 0):

Filesystem blocks quota limit grace files quota limit grace
/dev/hda2 19173 0 0 26 0 0
/dev/hda7 16 0 0 5 0 0

root@pinguino:~# quota -v ian
Disk quotas for user ian (uid 1000):

Filesystem blocks quota limit grace files quota limit grace
/dev/hda2 0 0 0 0 0 0
/dev/hda7 2948 10240 11264 172 1000 1100

Along with the statistics on current usage, you see the soft and hard quota limits
displayed. Listing 39 shows what happens if you exceed the soft limit and then what
happens if you attempt to exceed the hard limit. In this example, a file of
approximately 4MB is created and then a copy is made. Along with the original
usage of approximately 3MB, this is sufficient to exceed the soft limit. Notice how the
soft limit has an asterisk beside it indicating that the user is over quota. Note also
that the grace period columns now indicate how long the user has to correct the
problem.

Listing 39. Exceeding quotas
ian@pinguino:~$ dd if=/dev/zero of=big1 bs=512 count=8000
8000+0 records in
8000+0 records out
4096000 bytes transferred in 0.019915 seconds (205674545 bytes/sec)
ian@pinguino:~$ cp big1 big2
ian@pinguino:~$ quota
Disk quotas for user ian (uid 1000):

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 32 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Filesystem blocks quota limit grace files quota limit grace
/dev/hda7 10948* 10240 11264 7days 174 1000 1100

ian@pinguino:~$ cp big1 big3
cp: writing `big3': Disk quota exceeded

Generating quota reports

Checking user quotas one user at a time is not very useful, so you will want to use
the repquota command to generate quota reports. Listing 40 shows how to see the
quotas for all users and groups on /home.

Listing 40. Exceeding quotas
root@pinguino:~# repquota -ug /home
*** Report for user quotas on device /dev/hda7
Block grace time: 7days; Inode grace time: 7days

Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 16 0 0 5 0 0
ian +- 11204 10240 11264 6days 175 1000 1100
tom -- 8 10240 11264 3 1000 1100
gretchen -- 8 10240 11264 3 1000 1100
greg -- 12 10240 11264 4 1000 1100

*** Report for group quotas on device /dev/hda7
Block grace time: 7days; Inode grace time: 7days

Block limits File limits
Group used soft hard grace used soft hard grace
--
root -- 16 0 0 5 0 0
ian -- 11204 0 0 175 0 0
xml-101 -- 28 25600 28160 10 2500 2750

Note the plus sign in the listing for user ian, indicating that ian is over quota.

As with other quota commands, the -a option produces a report for all mounted
filesystems that have quota enabled. The -v option produces more verbose output.
And the -n option produces the listing by numeric user number rather than resolving
the user number to a name. This may provide a performance boost for large reports,
but is generally less useful to human readers.

Warning users

The warnquota command is used to send e-mail warnings to users who are over
quota. When a group is over quota, the e-mail is sent to the user specified in
/etc/quotagrpadmins for the group. Normally warnquota is run periodically as a
cron job. See the man pages for cron and warnquota for more information.

Section 6. File permissions and access control

This section covers material for topic 1.104.5 for the Junior Level Administration

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 33 of 56

http://www.ibm.com/legal/copytrade.shtml

(LPIC-1) exam 101. The topic has a weight of 5.

In this section, you learn about:

• Users and groups

• Permissions on files and directories

• Changing permissions

• Access modes

• Immutable files

• Default file creation modes

User and groups

By now, you know that Linux is a multi-user system and that each user belongs to
one primary group and possibly additional groups. It is also possible to log in as one
user and become another user using the su or sudo -scommands. Ownership of
files in Linux is closely related to user ids and groups, so let's review some basic
user and group information.

Who am I?

If you have not become another user, your id is still the one you used to log in. If you
have become another user, your prompt may include your user id, as most of the
examples in this tutorial do. If your prompt does not include your user id, then you
can use the whoami command to check your current effective id. Listing 41 shows
some examples where the prompt strings (from the PS1 environment variable) are
different from the other examples in this tutorial.

Listing 41. Determining effective user id
/home/ian$ whoami
tom
/home/ian$ exit
exit
$ whoami
ian

What groups am I in?

Similarly, you can find out what groups you are in by using the groups command.
You can find out both user and group information using the id command. Add a
user id parameter to either groups or id to see information for that user id instead
of the current user id. See Listing 42 for some examples.

Listing 42. Determining group membership
$ su tom
Password:
/home/ian$ groups
xml-101
/home/ian$ id

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 34 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

uid=1001(tom) gid=1001(xml-101) groups=1001(xml-101)
/home/ian$ exit
$ groups
ian adm dialout cdrom floppy audio dip video plugdev lpadmin scanner admin xml-101
$ id
uid=1000(ian) gid=1000(ian) groups=4(adm),20(dialout),24(cdrom),25(floppy),
29(audio),30(dip),44(video),46(plugdev),104(lpadmin),105(scanner),106(admin),
1000(ian),1001(xml-101)
$ groups tom
tom : xml-101

File ownership and permissions

Just as every user has an id and is a member of one primary group, so every file on
a Linux system has one owner and one group associated with it.

Ordinary files

Use the ls -l command to display the owner and group.

Listing 43. Determining file ownership
gretchen@pinguino:~$ ls -l /bin/bash .bashrc
-rw-r--r-- 1 gretchen xml-101 2227 Dec 20 10:06 .bashrc
-rwxr-xr-x 1 root root 645140 Oct 5 08:16 /bin/bash

In this particular example, user gretchen's .bashrc file is owned by her and is in the
xml-101 group, which is her primary group. Similarly, /bin/bash is owned by user root
and is in the group root. User names and groups names come from separate
namespaces, so a group name may be the same as a user name. In fact, many
distributions default to creating a matching group for each new user.

The Linux permissions model has three types of permission for each filesystem
object. The permissions are read (r), write (w), and execute (x). Write permission
includes the ability to alter or delete an object. In addition, these permissions are
specified separately for the file's owner, members of the file's group, and everyone
else.

Referring back to the first column of Listing 43, notice that it contains a ten-character
string. The first character describes the type of object (- for an ordinary file in this
example) and the remaining nine characters represent three groups of three
characters. The first group indicates the read, write, and execute permissions for the
file's owner. A - indicates that the corresponding permission is not granted. So user
gretchen can read and write the .bashrc file, but not execute it; while root can read,
write, and execute the /bin/bash file. The second group indicates the read, write, and
execute permissions for the file's group. Members of the xml-101 group can read
gretchen's .bashrc file, but not write it, as can everyone else. Similarly, members of
the root group and everyone else can read or execute the /bin/bash file.

Directories

Directories use the same permissions flags as regular files but they are interpreted
differently. Read permission for a directory allows a user with that permission to list
the contents of the directory. Write permission means a user with that permission
can create or delete files in the directory. Execute permission allows the user to

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 35 of 56

http://www.ibm.com/legal/copytrade.shtml

enter the directory and access any subdirectories. Without execute permission, the
filesystem objects inside a directory are not accessible. Without read permission, the
filesystem objects inside a directory are not viewable, but these objects can still be
accessed as long as you know the full path to the object on disk. Listing 44 is a
somewhat artificial example that illustrates these points.

Listing 44. Permissions and directories
ian@pinguino:~$ ls -l /home
total 8
drwxr-x--- 2 greg xml-101 60 2005-12-20 11:37 greg
drwx------ 13 gretchen xml-101 4096 2005-12-21 12:22 gretchen
drwxr-xr-x 15 ian ian 4096 2005-12-21 10:25 ian
d-wx--x--x 2 tom xml-101 75 2005-12-21 11:05 tom
ian@pinguino:~$ ls -a ~greg
. .. .bash_history .bash_profile .bashrc
ian@pinguino:~$ ls -a ~gretchen
ls: /home/gretchen: Permission denied
ian@pinguino:~$ ls -a ~tom
ls: /home/tom: Permission denied
ian@pinguino:~$ head -n 3 ~tom/.bashrc
~/.bashrc: executed by bash(1) for non-login shells.
see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
for examples

The first character of a long listing describes the type of object (d for a directory).
User greg's home directory has read and execute permission for members of the
xml-101 group, so user ian can list the directory. User gretchen's home directory has
neither read nor execute permission, so user ian cannot access it. User's tom's
home has execute but not read permission, so user ian cannot list the contents, but
can access objects within the directory if he knows they exist.

Other filesystem objects

A long listing may contain filesystem objects other than files and directories as
shown by the first character in the listing. We will see more of these later in this
section, but for now, note the possible types of object.

Table 3. Filesystem object types

Code Object type

- Regular file

d Directory

l Symbolic link

c Character special
device

b Block special
device

p FIFO

s Socket

Changing permissions

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 36 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Adding permissions

Suppose you create a "Hello world" shell script. When you first create the script, it
will usually not be executable. Use the chmod command with the +x option to add
the execute permissions as shown in Listing 45.

Listing 45. Creating an executable shell script
ian@pinguino:~$ echo 'echo "Hello world!"'>hello.sh
ian@pinguino:~$ ls -l hello.sh
-rw-r--r-- 1 ian ian 20 2005-12-22 12:57 hello.sh
ian@pinguino:~$./hello.sh
-bash: ./hello.sh: Permission denied
ian@pinguino:~$ chmod +x hello.sh
ian@pinguino:~$./hello.sh
Hello world!
ian@pinguino:~$ ls -l hello.sh
-rwxr-xr-x 1 ian ian 20 2005-12-22 12:57 hello.sh

You can use r to set the read permissions, and w to set the write permissions in a
similar manner. In fact, you can use any combination of r, w, and x together. For
example, using chmod +rwx would set all the read, write, and execute permissions
for a file. This form of chmod adds permissions that are not already set.

Being selective

You may have noticed in the above example that execute permission was set for the
owner, group, and others. To be more selective, you may prefix the mode
expression with u to set the permission for users, g to set it for groups, and o to set it
for others. Specifying a sets the permission for all users, which is equivalent to
omitting it. Listing 46 shows how to add user and group write and execute
permissions to another copy of the shell script.

Listing 46. Selectively adding permissions
ian@pinguino:~$ echo 'echo "Hello world!"'>hello2.sh
ian@pinguino:~$ chmod ug+xw hello2.sh
ian@pinguino:~$ ls -l hello2.sh
-rwxrwxr-- 1 ian ian 20 2005-12-22 13:17 hello2.sh

Removing permissions

Sometimes you need to remove permissions rather than add them. Simply change
the + to a -, and you remove any of the specified permissions that are set. Listing 47
shows how to remove all permissions for other users on the two shell scripts.

Listing 47. Removing permissions
ian@pinguino:~$ ls -l hello*
-rwxrwxr-- 1 ian ian 20 2005-12-22 13:17 hello2.sh
-rwxr-xr-x 1 ian ian 20 2005-12-22 12:57 hello.sh
ian@pinguino:~$ chmod o-xrw hello*
ian@pinguino:~$ ls -l hello*
-rwxrwx--- 1 ian ian 20 2005-12-22 13:17 hello2.sh
-rwxr-x--- 1 ian ian 20 2005-12-22 12:57 hello.sh

Note that you can change permissions on more than one file at a time. As with some
other commands you met in the tutorial for topic 103, you can even use the -R (or
--recursive) option to operate recursively on directories and files.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 37 of 56

http://www.ibm.com/legal/copytrade.shtml

Setting permissions

Now that you can add or remove permissions, you may wonder how to set just a
specific set of permissions. Do this using = instead of + or -. To set the permissions
on the above scripts so that other users have no access rights, you could use chmod
o= hello*, instead of the command we used to remove permissions.

If you want to set different permissions for user, group, or other, you can separate
different expressions by commas; for example, ug=rwx,o=rx, or you can use
numeric permissions, which are described next.

Octal permissions

So far you have used symbols (ugoa and rxw) to specify permissions. There are
three possible permissions in each group. You can also set permissions using octal
numbers instead of symbols. Permissions set in this way use up to four octal digits.
We will look at the first digit when we discuss attributes. The second digit defines
user permissions, the third group permissions and the fourth other permissions.
Each of these three digits is constructed by adding the desired permissions settings:
read (4), write (2), and execute (1). In the example for hello.sh in Listing 45, the
script was created with permissions -rw-r--r--, corresponding to octal 644. Setting
execute permission for everyone changed the mode to 755.

Using numeric permissions is very handy when you want to set all the permissions
at once without giving the same permissions to each of the groups. Use Table 4 as a
handy reference for octal permissions.

Table 4. Numeric permissions

Symbolic Octal

rwx 7

rw- 6

r-x 5

r-- 4

-wx 3

-w- 2

--x 1

--- 0

Access modes

When you log in, the new shell process runs with your user and group ids. These are
the permissions that govern your access to any files on the system. This usually
means that you cannot access files belonging to others and cannot access system
files. In fact, we as users are totally dependent on other programs to perform
operations on our behalf. Because the programs you start inherit your user id, they

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 38 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

cannot access any filesystem objects for which you haven't been granted access.

An important example is the /etc/passwd file, which cannot be changed by normal
users directly, because write permission is enabled only for root: However, normal
users need to be able to modify /etc/passwd somehow, whenever they need to
change their password. So, if the user is unable to modify this file, how can this be
done?

suid and sgid

The Linux permissions model has two special access modes called suid (set user id)
and sgid (set group id). When an executable program has the suid access modes
set, it will run as if it had been started by the file's owner, rather than by the user who
really started it. Similarly, with the sgid access modes set, the program will run as if
the initiating user belonged to the file's group rather than to his own group. Either or
both access modes may be set.

Listing 48 shows that the passwd executable is owned by root:

Listing 48. suid access mode on /usr/bin/passwd
ian@pinguino:~$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 25648 2005-10-11 12:14 /usr/bin/passwd

Note that in place of an x in the user's permission triplet, there's an s. This indicates
that, for this particular program, the suid and executable bits are set. So when
passwd runs, it will execute as if the root user had launched it , with full superuser
access, rather than that of the user who ran it. Because passwd runs with root
access, it can modify /etc/passwd.

The suid and sgid bits occupy the same space as the x bits in a long directory
listing. If the file is executable, the suid or sgid bits, if set, will be displayed as
lowercase s, otherwise they are displayed as uppercase S.

While suid and sgid are handy, and even necessary in many circumstances,
improper use of these access mode can allow breaches of a system's security. You
should have as few suid programs as possible. The passwd command is one of the
few that must be suid.

Setting suid and sgid

The suid and sgid bits are set and reset symbolically using the letter s; for example,
u+s sets the suid access mode, and g-s removes the sgid mode. In the octal
format, suid has the value 4 in the first (high order) digit, while sgid has the value 2.

Directories and sgid

When a directory has the sgid mode enabled, any files or directories created in it will
inherit the group id of the directory. This is particularly useful for directory trees that
are used by a group of people working on the same project. Listing 49 shows how
user greg could set up a directory that all users of the xml-101 group could use,
along with an example of how user gretchen could create a file in the directory.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 39 of 56

http://www.ibm.com/legal/copytrade.shtml

Listing 49. sgid access mode and directories
greg@pinguino:~$ mkdir xml101
greg@pinguino:~$ chmod g+ws xml101
greg@pinguino:~$ ls -ld xml101
drwxrwsr-x 2 greg xml-101 6 Dec 25 22:01 xml101
greg@pinguino:~$ su - gretchen
Password:
gretchen@pinguino:~$ touch ~greg/xml101/gretchen.txt
gretchen@pinguino:~$ ls -l ~greg/xml101/gretchen.txt
-rw-r--r-- 1 gretchen xml-101 0 Dec 25 22:02 /home/greg/xml101/gretchen.txt

Any member of group xml-101 can now create files in user greg's xml101 directory.
As Listing 50 shows, other members of the group cannot update the file gretchen.txt,
but they do have write permission to the directory and can therefore delete the file.

Listing 50. sgid access mode and file ownership
gretchen@pinguino:~$ su - tom
Password:
~$ cat something >> ~greg/xml101/gretchen.txt
-su: /home/greg/xml101/gretchen.txt: Permission denied
~$ rm ~greg/xml101/gretchen.txt
rm: remove write-protected regular empty file `/home/greg/xml101/gretchen.txt'? y
~$ ls -l ~greg/xml101
total 0

The sticky bit

You have just seen how anyone with write permission to a directory can delete files
in it. This might be acceptable for a workgroup project, but is not desirable for
globally shared file space such as the /tmp directory. Fortunately, there is a solution.

The remaining access mode bit is called the sticky bit. It is represented symbolically
by t and numerically as a 1 in the high-order octal digit. It is displayed in a long
directory listing in the place of the executable flag for other users (the last character),
with the same meaning for upper and lower case as for suid and sgid. If set for a
directory, it permits only the owning user or the superuser (root) to delete or unlink a
file. Listing 51 shows how user greg could set the sticky bit on his xml101 directory
and also shows that this bit is set for /tmp.

Listing 51. Sticky directories
greg@pinguino:~$ chmod +t xml101
greg@pinguino:~$ ls -l xml101
total 0
greg@pinguino:~$ ls -ld xml101
drwxrwsr-t 2 greg xml-101 6 Dec 26 09:41 xml101
greg@pinguino:~$ ls -ld xml101 /tmp
drwxrwxrwt 13 root root 520 Dec 26 10:03 /tmp
drwxrwsr-t 2 greg xml-101 6 Dec 26 09:41 xml101

On a historical note, UNIX® systems used to use the sticky bit on files to hoard
executable files in swap space and avoid reloading. Modern Linux kernels ignore the
sticky bit if it is set for files.

Access mode summary

Table 5 summarizes the symbolic and octal representation for the three access
modes discussed here.

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 40 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Table 5. Access modes

Access
mode

Symbolic Octal

suid s with u 4000

sgid s with g 2000

sticky t 1000

Combining this with the earlier permission information, you can see that the full octal
representation corresponding to greg's xml101 permissions and access modes of
drwxrwsr-t is 1775.

Immutable files

The access modes and permissions provide extensive control over who can do what
with files and directories. However, they do not prevent inadvertent deletion of files
by the root user. There are some additional attributes available on various
filesystems that provide additional capabilities. One of these is the immutable
attribute. If this is set, even root cannot delete the file until the attribute is unset.

Use the lsattr command to see whether the immutable flag (or any other attribute)
is set for a file or directory. To make a file immutable, use the chattr command
with the -i flag.

Listing 52 shows that user root can create an immutable file but cannot delete it until
the immutable flag is removed.

Listing 52. Immutable files
root@pinguino:~# touch keep.me
root@pinguino:~# chattr +i keep.me
root@pinguino:~# lsattr keep.me
----i------------ keep.me
root@pinguino:~# rm -f keep.me
rm: cannot remove `keep.me': Operation not permitted
root@pinguino:~# chattr -i keep.me
root@pinguino:~# rm -f keep.me

Changing the immutable flag requires root authority, or at least the
CAP_LINUX_IMMUTABLE capability. Making files immutable is often done as part
of a security or intrusion detection effort. See the capabilities man page
(man capabilities) for more information.

The umask

When a new file is created, the creation process specifies the permissions that the
new file should have. Often, the mode requested is 0666, which makes the file
readable and writable by anyone. However, this permissive creation is affected by a
umask value, which specifies what permissions a user does not want to grant
automatically to newly created files or directories. The system uses the umask value

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 41 of 56

http://www.ibm.com/legal/copytrade.shtml

to reduce the originally requested permissions. You can view your umask setting
with the umask command, as shown in Listing 53.

Listing 53. Displaying octal umask
ian@pinguino:~$ umask
0022

Remember that the umask specifies which permissions should not be granted. On
Linux systems, the umask normally defaults to 0022, which removes group and
other write permission from new files. Use the -S option to display the umask
symbolically, in a form that shows which are the permissions that are allowed.

You can use the umask command to set a umask as well as display one. So, if you
would like to keep your files more private and disallow all group or other access to
newly created files, you would use a umask value of 0077. Or set it symbolically
using umask u=rwx,g=,o=, as illustrated in Listing 54.

Listing 54. Setting the umask
ian@pinguino:~$ umask
0022
ian@pinguino:~$ umask -S
u=rwx,g=rx,o=rx
ian@pinguino:~$ umask u=rwx,g=,o=
ian@pinguino:~$ umask
0077
ian@pinguino:~$ touch newfile
ian@pinguino:~$ ls -l newfile
-rw------- 1 ian ian 0 2005-12-26 12:49 newfile

The next section shows you how to change the owner and group of an existing
filesystem object.

Section 7. Setting file owner and group

This section covers material for topic 1.104.6 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

In this section, you learn about:

• Changing a file's group

• Default group for new files

• Changing the owner of a file

In the previous section you learned how every filesystem object has an owner and a
group. In this section you learn how to change the owner or group of an existing file
and how the default group for new files can be set.

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 42 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

File group

To change the group of a file, use the chgrp command with a group name and one
or more filenames. You may also use the group number if you prefer. An ordinary
user must be a member of the group to which the file's group is being changed. The
root user may change files to any group. Listing 55 shows an example.

Listing 55. Changing group ownership
ian@pinguino:~$ touch file1 file2
ian@pinguino:~$ ls -l file*
-rw-r--r-- 1 ian ian 0 2005-12-26 14:09 file1
-rw-r--r-- 1 ian ian 0 2005-12-26 14:09 file2
ian@pinguino:~$ chgrp xml-101 file1
ian@pinguino:~$ chgrp 1001 file2
ian@pinguino:~$ ls -l file*
-rw-r--r-- 1 ian xml-101 0 2005-12-26 14:09 file1
-rw-r--r-- 1 ian xml-101 0 2005-12-26 14:09 file2

As with many of the commands covered in this tutorial, chgrp has a -R option to
allow changes to be applied recursively to all selected files and subdirectories.

Default group

In the previous section you learned how setting the sgid mode on a directory causes
new files created in that directory to belong to the group of the directory rather than
to the group of the user creating the file.

You may also use the newgrp command to temporarily change your primary group
to another group of which you are a member. A new shell will be created, and when
you exit the shell, your previous group will be reinstated, as shown in Listing 56.

Listing 56. Using newgrp to temporarily change default group
ian@pinguino:~$ newgrp xml-101
ian@pinguino:~$ groups
xml-101 adm dialout cdrom floppy audio dip video plugdev lpadmin scanner admin ian
ian@pinguino:~$ touch file3
ian@pinguino:~$ ls -l file3
-rw-r--r-- 1 ian xml-101 0 2005-12-26 14:34 file3
ian@pinguino:~$ exit
ian@pinguino:~$ groups
ian adm dialout cdrom floppy audio dip video plugdev lpadmin scanner admin xml-101

File owner

The root user can change the ownership of a file using the chown command. In its
simplest form, the syntax is like the chgrp command, except that a user name or
numeric id is used instead of a group name or id. The file's group may be changed at
the same time by adding a colon and a group name or id right after the user name or
id. If only a colon is given, then the user's default group is used. Naturally, the -R
option will apply the change recursively. Listing 57 shows an example.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 43 of 56

http://www.ibm.com/legal/copytrade.shtml

Listing 57. Using newgrp to temporarily change default group
root@pinguino:~# ls -l ~ian/file4
-rw-r--r-- 1 ian ian 0 2005-12-26 14:44 /home/ian/file4
root@pinguino:~# chown greg ~ian/file4
root@pinguino:~# ls -l ~ian/file4
-rw-r--r-- 1 greg ian 0 2005-12-26 14:44 /home/ian/file4
root@pinguino:~# chown tom: ~ian/file4
root@pinguino:~# ls -l ~ian/file4
-rw-r--r-- 1 tom xml-101 0 2005-12-26 14:44 /home/ian/file4

An older form of specifying both user and group used a dot instead of a colon. This
is no longer recommended as it may cause confusion when names include a dot.

Section 8. Hard and symbolic links

This section covers material for topic 1.104.7 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

In this section, you learn about:

• Hard links

• Symbolic links

Hard links

In the tutorial for topic 103, "LPI exam 101 prep (topic 103): GNU and UNIX
commands," you learned that a file or directory is contained in a collection of blocks
and that information about the file or directory is contained in an inode.

A hard link is a pointer to an inode. So, a file name is really a link to the inode that
contains information about the file. As you learned, you can use the -i option of the
ls command to display inode numbers for file and directory entries.

You can use the ln command to create additional hard links to an existing file (but
not to a directory, even though the system sets up . and .. as hard links). If there are
multiple hard links to an inode, then the inode is deleted only when the link count
goes to zero.

Listing 58 shows how to create a file and then a hard link to it. It also shows that
even though the original file name is removed, the second hard link prevents the
inode from being erased when the first filename is removed.

Listing 58. Hard links
ian@pinguino:~$ echo testing > file1
ian@pinguino:~$ ls -l file*
-rw-r--r-- 1 ian ian 8 2005-12-26 15:35 file1
ian@pinguino:~$ ln file1 file2

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 44 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

ian@pinguino:~$ ls -l file*
-rw-r--r-- 2 ian ian 8 2005-12-26 15:35 file1
-rw-r--r-- 2 ian ian 8 2005-12-26 15:35 file2
ian@pinguino:~$ rm file1
ian@pinguino:~$ ls -l file*
-rw-r--r-- 1 ian ian 8 2005-12-26 15:35 file2
ian@pinguino:~$ cat file2
testing

Hard links may exist only within a particular filesystem. They cannot cross
filesystems, since they refer to an inode by number, and inode numbers are only
unique within a filesystem.

Finding hard links

If you need to find which files link to a particular inode, you can use the find
command and the -samefile option with a filename or the -inum option with an
inode number, as shown in Listing 59.

Listing 59. Finding hard links
ian@pinguino:~$ ln file2 file3
ian@pinguino:~$ ls -il file2
172 -rw-r--r-- 2 ian ian 8 2005-12-26 15:35 file2
ian@pinguino:~$ find . -samefile file2
./file2
./file3
ian@pinguino:~$ find . -inum 172
./file2
./file3

Symbolic links

Another form of filesystem link that is used in Linux systems is a symbolic link (often
called simply a symlink). In this case, the link refers to the name of another
filesystem object rather than its inode. Symbolic links can refer to directories and can
refer to files on other filesystems. They are frequently used to provide aliases for
system commands. Using a long directory listing, you can see whether an object is a
symbolic link when its first character is the lowercase letter l, as shown in Listing 60.

Listing 60. Symbolic link examples
ian@pinguino:~$ ls -l /sbin/mkfs.*
-rwxr-xr-x 1 root root 14160 2005-09-20 12:43 /sbin/mkfs.cramfs
-rwxr-xr-x 3 root root 31224 2005-08-23 09:25 /sbin/mkfs.ext2
-rwxr-xr-x 3 root root 31224 2005-08-23 09:25 /sbin/mkfs.ext3
-rwxr-xr-x 2 root root 55264 2005-06-24 07:48 /sbin/mkfs.jfs
-rwxr-xr-x 1 root root 13864 2005-09-20 12:43 /sbin/mkfs.minix
lrwxrwxrwx 1 root root 7 2005-12-14 07:40 /sbin/mkfs.msdos -> mkdosfs
-rwxr-xr-x 2 root root 241804 2005-05-11 09:40 /sbin/mkfs.reiser4
-rwxr-xr-x 2 root root 151020 2004-11-25 21:09 /sbin/mkfs.reiserfs
lrwxrwxrwx 1 root root 7 2005-12-14 07:40 /sbin/mkfs.vfat -> mkdosfs
-rwxr-xr-x 1 root root 303788 2005-04-14 01:27 /sbin/mkfs.xfs

In addition to the type of l, you can see on the right a -> followed by the name that
the link refers to. For example, the mkfs.vfat command is a symbolic link to the
mkdosfs command. You will find many other such links in /sbin and other system
directories. Another tipoff is that the size is the number of characters in the link
target's name.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 45 of 56

http://www.ibm.com/legal/copytrade.shtml

You create a symlink using the ln command with the -s option as shown in Listing
61.

Listing 61. Creating symlinks
ian@pinguino:~$ touch file5
ian@pinguino:~$ ln -s file5 file6
ian@pinguino:~$ ln -s file5 file7
ian@pinguino:~$ ls -l file*
-rw-r--r-- 2 ian ian 8 2005-12-26 15:35 file2
-rw-r--r-- 2 ian ian 8 2005-12-26 15:35 file3
-rw-r--r-- 1 ian ian 0 2005-12-26 17:40 file5
lrwxrwxrwx 1 ian ian 5 2005-12-26 17:40 file6 -> file5
lrwxrwxrwx 1 ian ian 5 2005-12-26 17:40 file7 -> file5

Note that the link counts in the directory listing are not updated. Deleting the link
does not affect the target file. Symlinks do not prevent a file from being deleted; if
the target file is moved or deleted, then the symlink will be broken. For this reason,
many systems use colors in directory listings, often pale blue for a good link and red
for a broken one.

Finding symbolic links

If you need to find which files link symbolically to a particular file, you can use the
find command and the -lname option with a filename, as illustrated in Listing 62.
Links may use a relative or absolute path, so you probably want a leading asterisk in
the name to be matched.

Listing 62. Finding symbolic links
ian@pinguino:~$ mkdir linktest1
ian@pinguino:~$ ln -s ~/file3 linktest1/file8
.ian@pinguino:~$ find . -lname "*file3"
./linktest1/file8
ian@pinguino:~$ find . -lname "*file5"
./file7
./file6

Paths and symlinks

In most of the examples we have seen so far, the symlink has been in the same
directory as the target, and the paths in the link have been implicitly relative paths. In
Listing 62 we created a link in the linktest1 subdirectory, which used an absolute
target (~/file3). When creating symlinks, you need to consider whether to use relative
or absolute paths, since you may use either. Figure 3 illustrates the effect of moving
a set of files and symlinks into a subdirectory.

Figure 3. Symlinks and paths

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 46 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The red color indicates that the linktest1/file8 link is now broken. This is not
surprising as there is no longer a ~/file3. However, the two symlinks to file5 are still
good as the file is still in the same relative location, even though it and the two links
to it have moved. There are no hard and fast rules about whether to use relative or
absolute paths in symbolic links; it depends somewhat on whether the link or the
target is more likely to be moved. Just remember to consider the issue when making
symbolic links.

Broken symlinks

One final point on our broken symbolic link. Attempts to read the file will fail as it
does not exist. However, attempts to write it will work if you have the appropriate
permission on the target file, as shown in Listing 63.

Listing 63. Reading from and writing to a broken symlink
ian@pinguino:~$ cat linktest1/file8
cat: linktest1/file8: No such file or directory
ian@pinguino:~$ echo "test file 8" >> linktest1/file8
ian@pinguino:~$ cat linktest1/file8
test file 8
ian@pinguino:~$ find . -name file3
./linktest2/file3
./file3

Since I can create files in my home directory, writing to the broken link created the
missing target file.

Section 9. Finding and placing system files

This section covers material for topic 1.104.8 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 5.

In this section, you learn about:

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 47 of 56

http://www.ibm.com/legal/copytrade.shtml

• The Filesystem Hierarchy Standard and how files and directories are
classified

• Finding files and commands

Filesystem Hierarchy Standard

The Filesystem Hierarchy Standard is a document that specifies the layout of
directories on a Linux or other UNIX-like system. It was created to provide a
common layout to simplify distribution-independent software development, by
placing files in the same general place across Linux distributions. It is also used in
the Linux Standard Base (see Resources).

The two independent FHS categories

At the core of the FHS are two independent characteristics of files:

Shareable vs. unshareable
Shareable files can be located on one system and used on another, while
unshareable files must reside on the system on which they are used.

Variable vs. static
Static files include documentation, libraries, and binaries that do not change
without system administrator intervention. Files that are not static are variable.

These distinctions allow files with different sets of characteristics to be stored on
different filesystems. Table 6 is an example from the FHS document showing a
layout that would be FHS-compliant.

Table 6. FHS example

Shareable Unshareable

Static /usr
/opt

/etc
/boot

Variable /var/mail
/var/spool/news

/var/run
/var/lock

The root filesystem

The FHS goal is to keep the root filesystem as small as possible. It must contain all
the files necessary to boot, restore, recover, or repair the system, including the
utilities that an experienced administrator would need for these tasks. Note that
booting a system requires that enough be on the root filesystem to permit mounting
of other filesystems.

Directories in the root

Table 7 shows the purpose of the directories that the FHS requires in the root (or /)

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 48 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

filesystem. Either the directory or a symbolic link to it must be present, except for
those marked optional, which are required only if the corresponding subsystem is
present.

Table 7. FHS root filesystem

Directory Purpose

bin Essential command binaries

boot Static files of the boot loader

dev Device files

etc Host-specific system configuration

lib Essential shared libraries and kernel modules

media Mount point for removable media

mnt Mount point for mounting a filesystem temporarily

opt Add-on application software packages

sbin Essential system binaries

srv Data for services provided by this system

tmp Temporary files

usr Secondary hierarchy

var Variable data

home User home directories (optional)

lib<qual> Alternate format essential shared libraries
(optional)

root Home directory for the root user (optional)

/usr and /var

The /usr and /var hierarchies are complex enough to have complete sections of the
FHS devoted to them. The /usr filesystem is the second major section of the
filesystem, containing shareable, read-only data. It can be shared between systems,
although present practice does not often do this. The /var filesystem contains
variable data files, including spool directories and files, administrative and logging
data, and transient and temporary files. Some portions of /var are not shareable
between different systems, but others, such as /var/mail, /var/cache/man,
/var/cache/fonts, and /var/spool/news may be shared.

To fully understand the standard, read the FSH document (see Resources).

Where's that file?

Linux systems often contain hundreds of thousands of files. The newly installed
Ubuntu system that we have been using in this tutorial has nearly 50000 files in the
/usr hierarchy alone. A Fedora system that I have been using for some time has
about 175000. The remainder of this section looks at tools to help you find files,

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 49 of 56

http://www.ibm.com/legal/copytrade.shtml

particularly programs, in this vast sea of data.

Your PATH

If you have used several Linux systems, you may have noticed that if you log in as
root, you are able to execute commands such as fdisk, which you apparently
cannot execute if you are a user. What happens is that when you run a program at
the command line, the bash (or other) shell searches through a list of directories to
find the program you requested. The list of directories is specified in your PATH
environment variable, and it is not uncommon for root's path to include /sbin, while
non-root user paths do not. Listing 64 shows two different user path examples, as
well as a root path example.

Listing 64. Some PATH examples
ian@pinguino:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/bin/X11:/usr/games
[ian@attic4 ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/ian/bin
[ian@attic4 ~]$ su -
Password:
[root@attic4 ~]# echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:
/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin

As you can see, the PATH variable is just a list of directory names, separated by
colons. Since the fdisk command is actually located in /sbin/fdisk, only the first and
last of these paths would allow the user to run it by typing fdisk without providing a
fully qualified name (/sbin/fdisk).

Usually, your path is set in an initialization file such as .bash_profile or .bashrc. You
can change it for the current session by specifying a new path. Remember to export
the PATH variable if you want the new value to be available to other processes that
you start. An example is shown in Listing 65.

Listing 65. Changing your PATH
[ian@attic4 ~]$ fdisk
-bash: fdisk: command not found
[ian@attic4 ~]$ export PATH=/sbin:$PATH
[ian@attic4 ~]$ fdisk

Usage: fdisk [-l] [-b SSZ] [-u] device
E.g.: fdisk /dev/hda (for the first IDE disk)
or: fdisk /dev/sdc (for the third SCSI disk)
or: fdisk /dev/eda (for the first PS/2 ESDI drive)
or: fdisk /dev/rd/c0d0 or: fdisk /dev/ida/c0d0 (for RAID devices)
...

which, type, and whereis

In the previous example we discovered that the fdisk command was not available
only by attempting to run it. There are several commands that can help you do this
too.

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 50 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

which

You can use the which command to search your path and find out which command
will be executed (if any) when you type a command. Listing 66 shows an example of
finding the fdisk command.

Listing 66. Using which
[ian@attic4 ~]$ which fdisk
/usr/bin/which: no fdisk in (/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:
/usr/X11R6/bin:/home/ian/bin)
[ian@attic4 ~]$ export PATH=/sbin:$PATH
[ian@attic4 ~]$ which fdisk
/sbin/fdisk

The which command shows you the first occurrence of a command in your path. If
you want to know if there are multiple occurrences, then add the -a option as shown
in Listing 67.

Listing 67. Using which to find multiple occurrences
[root@attic4 ~]# which awk
/bin/awk
[root@attic4 ~]# which -a awk
/bin/awk
/usr/bin/awk

Here we find the awk command in /bin (which contains commands that may be used
by both the system administrator and by users, but which are required when no
other filesystems are mounted) and also in /sbin (which contains the binaries
essential for booting, restoring, recovering, and/or repairing the system).

type

There are some commands that the which command will not find, such as shell
builtins. The type builtin will tell you how a given command string will be evaluated
for execution. Listing 68 shows an example using the type command itself.

Listing 68. Using type
[root@attic4 ~]# which type
/usr/bin/which: no type in (/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:
/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin)
[root@attic4 ~]# type type
type is a shell builtin

whereis

If you want to find more information than just the location of a program, then you can
use the whereis command. For example, you can find the man pages or other
information, as shown in Listing 69.

Listing 69. Using whereis
[root@attic4 ~]# whereis awk
awk: /bin/awk /usr/bin/awk /usr/libexec/awk /usr/share/awk
/usr/share/man/man1p/awk.1p.gz /usr/share/man/man1/awk.1.gz

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 51 of 56

http://www.ibm.com/legal/copytrade.shtml

Note that the copy of awk in /sbin was not found by whereis. The directories used
by whereis are fixed, so the command may not always find what you are looking
for. The whereis command can also search for source files, specify alternate
search paths, and search for unusual entries. Consult the man pages to see how to
override this behavior or change the fixed paths used by whereis.

find

In the tutorial for topic 103, "LPI exam 101 prep (topic 103): GNU and UNIX
commands," you learned how to find files based on name (including wildcards), path,
size, or timestamp. In the earlier section on Hard and symbolic links, you learned
how to find the links to a particular file or inode.

The find command is the Swiss army knife of file searching tools on Linux systems.
Two other capabilities that you may find useful are the ability to find files based on
user or group name and the ability to find files based on permissions.

Listing 70 shows a directory listing for our sample workgroup directory
~greg/xml101, along with an example of how to find all the files owned by user ian,
and all the ones that do not have the xml-101 group. Note how the exclamation
point, !, negates the sense of a test when using find.

Listing 70. Finding files by user and group
ian@pinguino:~$ ls -l ~greg/xml101/*
-rw-r--r-- 1 greg xml-101 0 2005-12-27 07:38 /home/greg/xml101/file1.c
-rw-r----- 1 greg xml-101 0 2005-12-27 07:39 /home/greg/xml101/file2.c
-rw-r--r-- 1 tom xml-101 0 2005-12-27 07:41 /home/greg/xml101/file3.c
-rw-r--r-- 1 ian ian 0 2005-12-27 07:40 /home/greg/xml101/file4.c
-rw-r--r-- 1 tom xml-101 0 2005-12-27 07:41 /home/greg/xml101/file5.c
-rw-r--r-- 1 ian xml-101 0 2005-12-27 07:40 /home/greg/xml101/file6.c
-rw-r--r-- 1 tom xml-101 0 2005-12-27 07:43 /home/greg/xml101/file7.c
-rwxr-xr-x 1 tom xml-101 0 2005-12-27 07:42 /home/greg/xml101/myprogram
ian@pinguino:~$ find ~greg/xml101 -user ian
/home/greg/xml101/file4.c
/home/greg/xml101/file6.c
ian@pinguino:~$ find ~greg/xml101 ! -group xml-101
/home/greg/xml101/file4.c

To find files by permission, you can use the -perm test along with symbolic
expressions similar to those used with the chmod or umask commands. You can
search for exact permissions, but it is often more useful to prefix the permission
expression with a hyphen to indicate that you want files with those permissions set,
but you don't care about other permissions. Using the files of Listing 70, Listing 71
illustrates how to find files that are executable by user and group, and two different
ways of finding files that are not readable by others.

Listing 71. Finding files by permission
ian@pinguino:~$ find ~greg/xml101 -perm -ug=x
/home/greg/xml101
/home/greg/xml101/myprogram
ian@pinguino:~$ find ~greg/xml101 ! -perm -o=r
/home/greg/xml101/file2.c
ian@pinguino:~$ find ~greg/xml101 ! -perm -0004
/home/greg/xml101/file2.c

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 52 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

We have covered several major types of search that you can do with the find
command. To further narrow your output, you can combine multiple expressions and
you can add regular expressions to the mix. To learn more about this versatile
command, use the man page, or better, use info find if you have the info system
installed.

Listing 72 shows a final example of searching with find. This example does a cd to
/usr/include to keep the listing length manageable, then finds all files containing xt
in their path name without regard to case. The second example further restricts this
output to files that are not directories and that are at least 2 kilobytes in size. Actual
output on your system may differ depending on what packages you have installed.

Listing 72. A final example of find
ian@pinguino:/usr/include$ find . -iregex ".*xt.*"
./X11/xterm
./X11/xterm/ptyx.h
./irssi/src/fe-common/core/printtext.h
./irssi/src/fe-common/core/hilight-text.h
ian@pinguino:/usr/include$ find . -iregex ".*xt.*" ! -type d -size +2k
./X11/xterm/ptyx.h
./irssi/src/fe-common/core/printtext.h

Note that the regular expression must match the full path returned by find, and
remember the difference between regular expressions and wildcards.

locate and updatedb

The find command searches all the directories you specify, every time you run it.
To speed things up, you can use another command, locate, which uses a
database of stored path information rather than searching the filesystem every time.

locate and slocate

The locate command searches for matching files in a database that is usually
updated daily by a cron job. On modern Linux systems, this command is usually
replaced by the slocate command, which stores permissions as well as paths and
thus prevents users from prying into directories that they could not otherwise see.
On these systems you will usually find that locate is a symbolic link to slocate,
so you can use either command.

The locate command matches against any part of a pathname, not just the file
itself. Listing 73 shows that locate is a symlink to slocate and then shows how to
find paths containing the string bin/ls.

Listing 73. Using locate
[ian@attic4 ~]$ ls -l $(which locate)
lrwxrwxrwx 1 root slocate 7 Aug 24 23:04 /usr/bin/locate -> slocate
[ian@attic4 ~]$ locate bin/ls
/bin/ls
/usr/bin/lsb_release
/usr/bin/lskatproc
/usr/bin/lspgpot
/usr/bin/lsattr
/usr/bin/lskat

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 53 of 56

http://www.ibm.com/legal/copytrade.shtml

/usr/bin/lshal
/usr/bin/lsdiff
/usr/sbin/lsof
/sbin/lsmod
/sbin/lsusb
/sbin/lspci

updatedb

The database used by slocate is stored in the /var filesystem, in a location such as
/var/lib/slocate/slocate.db. If you see output such as Listing 74, then your system is
not running this job.

Listing 74. No database for slocate
[ian@attic4 ~]$ locate bin/ls
warning: locate: could not open database: /var/lib/slocate/slocate.db: No such file or
directory
warning: You need to run the 'updatedb' command (as root) to create the database.
Please edit /etc/updatedb.conf to enable the daily cron job.

The database is created or updated using the updatedb command. This is usually
run daily as a cron job. The file /etc/updatedb.conf is the configuration file for
updatedb. To enable daily updates, the root user needs to edit /etc/updatedb.conf
and set DAILY_UPDATE=yes. To create the database immediately, run the
updatedb command as root.

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 54 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• In "Basic tasks for new Linux developers" (developerWorks, March 2005), learn
how to open a terminal window or shell prompt and much more.

• In the Proceedings of the Linux Symposium, Volume One (July 2005, Ottawa,
Canada), learn more about ext3 in "State of the Art: Where we are with the Ext3
filesystem," a paper by M. Cao, et. al.

• XFS: A high-performance journaling filesystem is the home page of the XFS
project at SGI.

• Reiser4 is the next version of the ReiserFS filesystem.

• qtparted is a graphical partitioning tool that uses the Qt toolkit.

• gparted is a graphical partitioning tool designed for the GNOME desktop; it uses
the GTK+GUI library.

• The Linux Documentation Project has a variety of useful documents, especially
its HOWTOs.

• The Quota mini-HOWTO can help answer questions on quotas.

• Visit the home of the Filesystem Hierarchy Standard (FHS).

• "Advanced filesystem implementor's guide, Part 3" tells you more about the
tmpfs virtual memory filesystem.

• At the LSB home page, learn about The Linux Standard Base (LSB), a Free
Standards Group (FSG) project to develop a standard binary operating
environment.

• LPI Linux Certification in a Nutshell (O'Reilly, 2001) and LPIC I Exam Cram 2:
Linux Professional Institute Certification Exams 101 and 102 (Exam Cram 2)
(Que, 2004) are references for those who prefer book format.

• Find more tutorials for Linux developers in the developerWorks Linux zone.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Download IBM trial software directly from developerWorks.

ibm.com/developerWorks developerWorks®

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 55 of 56

http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org/en/lpic.html
http://www.ibm.com/developerworks/linux/library/l-sek51-basics/index.html
http://oss.sgi.com/projects/xfs/
http://www.namesys.com/
http://qtparted.sourceforge.net/
http://gparted.sourceforge.net/
http://www.tldp.org/
http://www.tldp.org/HOWTO/Quota.html
http://www.pathname.com/fhs/
http://www.ibm.com/developerworks/linux/library/l-fs3.html
http://www.linuxbase.org/
http://www.oreilly.com/catalog/lpicertnut/
http://www.examcram2.com/bookstore/product.asp?isbn=0789731274&rl=1
http://www.examcram2.com/bookstore/product.asp?isbn=0789731274&rl=1
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?type_by=Tutorials&S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=TUT
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

Discuss

• Participate in the discussion forum for this content.

• Read developerWorks blogs, and get involved in the developerWorks
community.

About the author

Ian Shields
Ian Shields works on a multitude of Linux projects for the developerWorks Linux
zone. He is a Senior Programmer at IBM at the Research Triangle Park, NC. He
joined IBM in Canberra, Australia, as a Systems Engineer in 1973, and has since
worked on communications systems and pervasive computing in Montreal, Canada,
and RTP, NC. He has several patents and has published several papers. His
undergraduate degree is in pure mathematics and philosophy from the Australian
National University. He has an M.S. and Ph.D. in computer science from North
Carolina State University. You can contact Ian at ishields@us.ibm.com.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Windows is a trademark of Microsoft Corporation in the United States, other
countries, or both.

developerWorks® ibm.com/developerWorks

Devices, Linux filesystems, and the Filesystem Hierarchy Standard
Page 56 of 56 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/blogs/
mailto:ishields@us.ibm.com?subject=LPIC-1 exam 101 topic 104
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Creating partitions and filesystems
	Block devices and partitions
	Displaying partition information
	Partitioning with fdisk
	Filesystem types
	Creating filesystems
	Creating swap space
	Other tools and filesystems

	Filesystem integrity
	Monitoring free space
	Checking filesystems
	Repairing filesystems
	Advanced tools

	Mounting and unmounting filesystems
	Mounting filesystems
	Mount options
	fstab
	Unmounting filesystems
	Swap space

	Disk quotas
	Enabling quotas
	Setting quota limits
	Checking quotas
	Generating quota reports
	Warning users

	File permissions and access control
	User and groups
	File ownership and permissions
	Changing permissions
	Access modes
	Immutable files
	The umask

	Setting file owner and group
	File group
	Default group
	File owner

	Hard and symbolic links
	Hard links
	Symbolic links

	Finding and placing system files
	Filesystem Hierarchy Standard
	Where's that file?
	Your PATH
	which, type, and whereis
	find
	locate and updatedb

	Resources
	About the author
	Trademarks

